#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H #define FASTFLOAT_DECIMAL_TO_BINARY_H #include "float_common.h" #include "fast_table.h" #include #include #include #include #include #include #include namespace fast_float { // This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating // the result, with the "high" part corresponding to the most significant bits and the // low part corresponding to the least significant bits. // template fastfloat_really_inline value128 compute_product_approximation(int64_t q, uint64_t w) { const int index = 2 * int(q - powers::smallest_power_of_five); // For small values of q, e.g., q in [0,27], the answer is always exact because // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]); // gives the exact answer. value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]); static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]"); constexpr uint64_t precision_mask = (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) : uint64_t(0xFFFFFFFFFFFFFFFF); if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower) // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed. value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]); firstproduct.low += secondproduct.high; if(secondproduct.high > firstproduct.low) { firstproduct.high++; } } return firstproduct; } namespace detail { /** * For q in (0,350), we have that * f = (((152170 + 65536) * q ) >> 16); * is equal to * floor(p) + q * where * p = log(5**q)/log(2) = q * log(5)/log(2) * * For negative values of q in (-400,0), we have that * f = (((152170 + 65536) * q ) >> 16); * is equal to * -ceil(p) + q * where * p = log(5**-q)/log(2) = -q * log(5)/log(2) */ fastfloat_really_inline int power(int q) noexcept { return (((152170 + 65536) * q) >> 16) + 63; } } // namespace detail // w * 10 ** q // The returned value should be a valid ieee64 number that simply need to be packed. // However, in some very rare cases, the computation will fail. In such cases, we // return an adjusted_mantissa with a negative power of 2: the caller should recompute // in such cases. template fastfloat_really_inline adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept { adjusted_mantissa answer; if ((w == 0) || (q < binary::smallest_power_of_ten())) { answer.power2 = 0; answer.mantissa = 0; // result should be zero return answer; } if (q > binary::largest_power_of_ten()) { // we want to get infinity: answer.power2 = binary::infinite_power(); answer.mantissa = 0; return answer; } // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five]. // We want the most significant bit of i to be 1. Shift if needed. int lz = leading_zeroes(w); w <<= lz; // The required precision is binary::mantissa_explicit_bits() + 3 because // 1. We need the implicit bit // 2. We need an extra bit for rounding purposes // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift) value128 product = compute_product_approximation(q, w); if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further // In some very rare cases, this could happen, in which case we might need a more accurate // computation that what we can provide cheaply. This is very, very unlikely. // const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0, // and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation. if(!inside_safe_exponent) { answer.power2 = -1; // This (a negative value) indicates an error condition. return answer; } } // The "compute_product_approximation" function can be slightly slower than a branchless approach: // value128 product = compute_product(q, w); // but in practice, we can win big with the compute_product_approximation if its additional branch // is easily predicted. Which is best is data specific. int upperbit = int(product.high >> 63); answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); answer.power2 = int(detail::power(int(q)) + upperbit - lz - binary::minimum_exponent()); if (answer.power2 <= 0) { // we have a subnormal? // Here have that answer.power2 <= 0 so -answer.power2 >= 0 if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure. answer.power2 = 0; answer.mantissa = 0; // result should be zero return answer; } // next line is safe because -answer.power2 + 1 < 64 answer.mantissa >>= -answer.power2 + 1; // Thankfully, we can't have both "round-to-even" and subnormals because // "round-to-even" only occurs for powers close to 0. answer.mantissa += (answer.mantissa & 1); // round up answer.mantissa >>= 1; // There is a weird scenario where we don't have a subnormal but just. // Suppose we start with 2.2250738585072013e-308, we end up // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer // subnormal, but we can only know this after rounding. // So we only declare a subnormal if we are smaller than the threshold. answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1; return answer; } // usually, we round *up*, but if we fall right in between and and we have an // even basis, we need to round down // We are only concerned with the cases where 5**q fits in single 64-bit word. if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) && ((answer.mantissa & 3) == 1) ) { // we may fall between two floats! // To be in-between two floats we need that in doing // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3); // ... we dropped out only zeroes. But if this happened, then we can go back!!! if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) { answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up } } answer.mantissa += (answer.mantissa & 1); // round up answer.mantissa >>= 1; if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); answer.power2++; // undo previous addition } answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); if (answer.power2 >= binary::infinite_power()) { // infinity answer.power2 = binary::infinite_power(); answer.mantissa = 0; } return answer; } } // namespace fast_float #endif