// this software is distributed under the MIT License (http://www.opensource.org/licenses/MIT): // // Copyright 2018-2020, CWI, TU Munich, FSU Jena // // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files // (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, // merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // - The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR // IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // // You can contact the authors via the FSST source repository : https://github.com/cwida/fsst #include "libfsst.hpp" Symbol concat(Symbol a, Symbol b) { Symbol s; u32 length = a.length()+b.length(); if (length > Symbol::maxLength) length = Symbol::maxLength; s.set_code_len(FSST_CODE_MASK, length); s.val.num = (b.val.num << (8*a.length())) | a.val.num; return s; } namespace std { template <> class hash { public: size_t operator()(const QSymbol& q) const { uint64_t k = q.symbol.val.num; const uint64_t m = 0xc6a4a7935bd1e995; const int r = 47; uint64_t h = 0x8445d61a4e774912 ^ (8*m); k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; h ^= h >> r; h *= m; h ^= h >> r; return h; } }; } bool isEscapeCode(u16 pos) { return pos < FSST_CODE_BASE; } std::ostream& operator<<(std::ostream& out, const Symbol& s) { for (u32 i=0; i line, const size_t len[], bool zeroTerminated=false) { SymbolTable *st = new SymbolTable(), *bestTable = new SymbolTable(); int bestGain = (int) -FSST_SAMPLEMAXSZ; // worst case (everything exception) size_t sampleFrac = 128; // start by determining the terminator. We use the (lowest) most infrequent byte as terminator st->zeroTerminated = zeroTerminated; if (zeroTerminated) { st->terminator = 0; // except in case of zeroTerminated mode, then byte 0 is terminator regardless frequency } else { u16 byteHisto[256]; memset(byteHisto, 0, sizeof(byteHisto)); for(size_t i=0; iterminator = 256; while(i-- > 0) { if (byteHisto[i] > minSize) continue; st->terminator = i; minSize = byteHisto[i]; } } assert(st->terminator != 256); // a random number between 0 and 128 auto rnd128 = [&](size_t i) { return 1 + (FSST_HASH((i+1UL)*sampleFrac)&127); }; // compress sample, and compute (pair-)frequencies auto compressCount = [&](SymbolTable *st, Counters &counters) { // returns gain int gain = 0; for(size_t i=0; i sampleFrac) continue; } if (cur < end) { u16 code2 = 255, code1 = st->findLongestSymbol(cur, end); cur += st->symbols[code1].length(); gain += (int) (st->symbols[code1].length()-(1+isEscapeCode(code1))); while (true) { // count single symbol (i.e. an option is not extending it) counters.count1Inc(code1); // as an alternative, consider just using the next byte.. if (st->symbols[code1].length() != 1) // .. but do not count single byte symbols doubly counters.count1Inc(*start); if (cur==end) { break; } // now match a new symbol start = cur; if (curhashTabSize-1); Symbol s = st->hashTab[idx]; code2 = st->shortCodes[word & 0xFFFF] & FSST_CODE_MASK; word &= (0xFFFFFFFFFFFFFFFF >> (u8) s.icl); if ((s.icl < FSST_ICL_FREE) & (s.val.num == word)) { code2 = s.code(); cur += s.length(); } else if (code2 >= FSST_CODE_BASE) { cur += 2; } else { code2 = st->byteCodes[word & 0xFF] & FSST_CODE_MASK; cur += 1; } } else { code2 = st->findLongestSymbol(cur, end); cur += st->symbols[code2].length(); } // compute compressed output size gain += ((int) (cur-start))-(1+isEscapeCode(code2)); if (sampleFrac < 128) { // no need to count pairs in final round // consider the symbol that is the concatenation of the two last symbols counters.count2Inc(code1, code2); // as an alternative, consider just extending with the next byte.. if ((cur-start) > 1) // ..but do not count single byte extensions doubly counters.count2Inc(code1, *start); } code1 = code2; } } } return gain; }; auto makeTable = [&](SymbolTable *st, Counters &counters) { // hashmap of c (needed because we can generate duplicate candidates) unordered_set cands; // artificially make terminater the most frequent symbol so it gets included u16 terminator = st->nSymbols?FSST_CODE_BASE:st->terminator; counters.count1Set(terminator,65535); auto addOrInc = [&](unordered_set &cands, Symbol s, u64 count) { if (count < (5*sampleFrac)/128) return; // improves both compression speed (less candidates), but also quality!! QSymbol q; q.symbol = s; q.gain = count * s.length(); auto it = cands.find(q); if (it != cands.end()) { q.gain += (*it).gain; cands.erase(*it); } cands.insert(q); }; // add candidate symbols based on counted frequency for (u32 pos1=0; pos1nSymbols; pos1++) { u32 cnt1 = counters.count1GetNext(pos1); // may advance pos1!! if (!cnt1) continue; // heuristic: promoting single-byte symbols (*8) helps reduce exception rates and increases [de]compression speed Symbol s1 = st->symbols[pos1]; addOrInc(cands, s1, ((s1.length()==1)?8LL:1LL)*cnt1); if (sampleFrac >= 128 || // last round we do not create new (combined) symbols s1.length() == Symbol::maxLength || // symbol cannot be extended s1.val.str[0] == st->terminator) { // multi-byte symbols cannot contain the terminator byte continue; } for (u32 pos2=0; pos2nSymbols; pos2++) { u32 cnt2 = counters.count2GetNext(pos1, pos2); // may advance pos2!! if (!cnt2) continue; // create a new symbol Symbol s2 = st->symbols[pos2]; Symbol s3 = concat(s1, s2); if (s2.val.str[0] != st->terminator) // multi-byte symbols cannot contain the terminator byte addOrInc(cands, s3, cnt2); } } // insert candidates into priority queue (by gain) auto cmpGn = [](const QSymbol& q1, const QSymbol& q2) { return (q1.gain < q2.gain) || (q1.gain == q2.gain && q1.symbol.val.num > q2.symbol.val.num); }; priority_queue,decltype(cmpGn)> pq(cmpGn); for (auto& q : cands) pq.push(q); // Create new symbol map using best candidates st->clear(); while (st->nSymbols < 255 && !pq.empty()) { QSymbol q = pq.top(); pq.pop(); st->add(q.symbol); } }; u8 bestCounters[512*sizeof(u16)]; #ifdef NONOPT_FSST for(size_t frac : {127, 127, 127, 127, 127, 127, 127, 127, 127, 128}) { sampleFrac = frac; #else for(sampleFrac=8; true; sampleFrac += 30) { #endif memset(&counters, 0, sizeof(Counters)); long gain = compressCount(st, counters); if (gain >= bestGain) { // a new best solution! counters.backup1(bestCounters); *bestTable = *st; bestGain = gain; } if (sampleFrac >= 128) break; // we do 5 rounds (sampleFrac=8,38,68,98,128) makeTable(st, counters); } delete st; counters.restore1(bestCounters); makeTable(bestTable, counters); bestTable->finalize(zeroTerminated); // renumber codes for more efficient compression return bestTable; } static inline size_t compressSIMD(SymbolTable &symbolTable, u8* symbolBase, size_t nlines, const size_t len[], const u8* line[], size_t size, u8* dst, size_t lenOut[], u8* strOut[], int unroll) { size_t curLine = 0, inOff = 0, outOff = 0, batchPos = 0, empty = 0, budget = size; u8 *lim = dst + size, *codeBase = symbolBase + (1<<18); // 512KB temp space for compressing 512 strings SIMDjob input[512]; // combined offsets of input strings (cur,end), and string #id (pos) and output (dst) pointer SIMDjob output[512]; // output are (pos:9,dst:19) end pointers (compute compressed length from this) size_t jobLine[512]; // for which line in the input sequence was this job (needed because we may split a line into multiple jobs) while (curLine < nlines && outOff <= (1<<19)) { size_t prevLine = curLine, chunk, curOff = 0; // bail out if the output buffer cannot hold the compressed next string fully if (((len[curLine]-curOff)*2 + 7) > budget) break; // see below for the +7 else budget -= (len[curLine]-curOff)*2; strOut[curLine] = (u8*) 0; lenOut[curLine] = 0; do { do { chunk = len[curLine] - curOff; if (chunk > 511) { chunk = 511; // large strings need to be chopped up into segments of 511 bytes } // create a job in this batch SIMDjob job; job.cur = inOff; job.end = job.cur + chunk; job.pos = batchPos; job.out = outOff; // worst case estimate for compressed size (+7 is for the scatter that writes extra 7 zeros) outOff += 7 + 2*(size_t)(job.end - job.cur); // note, total size needed is 512*(511*2+7) bytes. if (outOff > (1<<19)) break; // simdbuf may get full, stop before this chunk // register job in this batch input[batchPos] = job; jobLine[batchPos] = curLine; if (chunk == 0) { empty++; // detect empty chunks -- SIMD code cannot handle empty strings, so they need to be filtered out } else { // copy string chunk into temp buffer memcpy(symbolBase + inOff, line[curLine] + curOff, chunk); inOff += chunk; curOff += chunk; symbolBase[inOff++] = (u8) symbolTable.terminator; // write an extra char at the end that will not be encoded } if (++batchPos == 512) break; } while(curOff < len[curLine]); if ((batchPos == 512) || (outOff > (1<<19)) || (++curLine >= nlines)) { // cannot accumulate more? if (batchPos-empty >= 32) { // if we have enough work, fire off fsst_compressAVX512 (32 is due to max 4x8 unrolling) // radix-sort jobs on length (longest string first) // -- this provides best load balancing and allows to skip empty jobs at the end u16 sortpos[513]; memset(sortpos, 0, sizeof(sortpos)); // calculate length histo for(size_t i=0; i> (u8) s.icl); if ((s.icl < FSST_ICL_FREE) && s.val.num == word) { *out++ = (u8) s.code(); cur += s.length(); } else { // could be a 2-byte or 1-byte code, or miss // handle everything with predication *out = (u8) code; out += 1+((code&FSST_CODE_BASE)>>8); cur += (code>>FSST_LEN_BITS); } } job.out = out - codeBase; } // postprocess job info job.cur = 0; job.end = job.out - input[job.pos].out; // misuse .end field as compressed size job.out = input[job.pos].out; // reset offset to start of encoded string input[job.pos] = job; } // copy out the result data for(size_t i=0; i> (u8) s.icl); if ((s.icl < FSST_ICL_FREE) && s.val.num == word) { *out++ = (u8) s.code(); cur += s.length(); } else if (avoidBranch) { // could be a 2-byte or 1-byte code, or miss // handle everything with predication *out = (u8) code; out += 1+((code&FSST_CODE_BASE)>>8); cur += (code>>FSST_LEN_BITS); } else if ((u8) code < byteLim) { // 2 byte code after checking there is no longer pattern *out++ = (u8) code; cur += 2; } else { // 1 byte code or miss. *out = (u8) code; out += 1+((code&FSST_CODE_BASE)>>8); // predicated - tested with a branch, that was always worse cur++; } } } }; for(curLine=0; curLine 511) { chunk = 511; // we need to compress in chunks of 511 in order to be byte-compatible with simd-compressed FSST } if ((2*chunk+7) > (size_t) (lim-out)) { return curLine; // out of memory } // copy the string to the 511-byte buffer memcpy(buf, cur, chunk); buf[chunk] = (u8) symbolTable.terminator; cur = buf; end = cur + chunk; // based on symboltable stats, choose a variant that is nice to the branch predictor if (noSuffixOpt) { compressVariant(true,false); } else if (avoidBranch) { compressVariant(false,true); } else { compressVariant(false, false); } } while((curOff += chunk) < lenIn[curLine]); lenOut[curLine] = (size_t) (out - strOut[curLine]); } return curLine; } #define FSST_SAMPLELINE ((size_t) 512) // quickly select a uniformly random set of lines such that we have between [FSST_SAMPLETARGET,FSST_SAMPLEMAXSZ) string bytes vector makeSample(u8* sampleBuf, const u8* strIn[], const size_t **lenRef, size_t nlines) { size_t totSize = 0; const size_t *lenIn = *lenRef; vector sample; for(size_t i=0; i sample = makeSample(sampleBuf, strIn, &sampleLen, n?n:1); // careful handling of input to get a right-size and representative sample Encoder *encoder = new Encoder(); encoder->symbolTable = shared_ptr(buildSymbolTable(encoder->counters, sample, sampleLen, zeroTerminated)); if (sampleLen != lenIn) delete[] sampleLen; delete[] sampleBuf; return (fsst_encoder_t*) encoder; } /* create another encoder instance, necessary to do multi-threaded encoding using the same symbol table */ extern "C" fsst_encoder_t* fsst_duplicate(fsst_encoder_t *encoder) { Encoder *e = new Encoder(); e->symbolTable = ((Encoder*)encoder)->symbolTable; // it is a shared_ptr return (fsst_encoder_t*) e; } // export a symbol table in compact format. extern "C" u32 fsst_export(fsst_encoder_t *encoder, u8 *buf) { Encoder *e = (Encoder*) encoder; // In ->version there is a versionnr, but we hide also suffixLim/terminator/nSymbols there. // This is sufficient in principle to *reconstruct* a fsst_encoder_t from a fsst_decoder_t // (such functionality could be useful to append compressed data to an existing block). // // However, the hash function in the encoder hash table is endian-sensitive, and given its // 'lossy perfect' hashing scheme is *unable* to contain other-endian-produced symbol tables. // Doing a endian-conversion during hashing will be slow and self-defeating. // // Overall, we could support reconstructing an encoder for incremental compression, but // should enforce equal-endianness. Bit of a bummer. Not going there now. // // The version field is now there just for future-proofness, but not used yet // version allows keeping track of fsst versions, track endianness, and encoder reconstruction u64 version = (FSST_VERSION << 32) | // version is 24 bits, most significant byte is 0 (((u64) e->symbolTable->suffixLim) << 24) | (((u64) e->symbolTable->terminator) << 16) | (((u64) e->symbolTable->nSymbols) << 8) | FSST_ENDIAN_MARKER; // least significant byte is nonzero /* do not assume unaligned reads here */ memcpy(buf, &version, 8); buf[8] = e->symbolTable->zeroTerminated; for(u32 i=0; i<8; i++) buf[9+i] = (u8) e->symbolTable->lenHisto[i]; u32 pos = 17; // emit only the used bytes of the symbols for(u32 i = e->symbolTable->zeroTerminated; i < e->symbolTable->nSymbols; i++) for(u32 j = 0; j < e->symbolTable->symbols[i].length(); j++) buf[pos++] = e->symbolTable->symbols[i].val.str[j]; // serialize used symbol bytes return pos; // length of what was serialized } #define FSST_CORRUPT 32774747032022883 /* 7-byte number in little endian containing "corrupt" */ extern "C" u32 fsst_import(fsst_decoder_t *decoder, u8 const *buf) { u64 version = 0; u32 code, pos = 17; u8 lenHisto[8]; // version field (first 8 bytes) is now there just for future-proofness, unused still (skipped) memcpy(&version, buf, 8); if ((version>>32) != FSST_VERSION) return 0; decoder->zeroTerminated = buf[8]&1; memcpy(lenHisto, buf+9, 8); // in case of zero-terminated, first symbol is "" (zero always, may be overwritten) decoder->len[0] = 1; decoder->symbol[0] = 0; // we use lenHisto[0] as 1-byte symbol run length (at the end) code = decoder->zeroTerminated; if (decoder->zeroTerminated) lenHisto[0]--; // if zeroTerminated, then symbol "" aka 1-byte code=0, is not stored at the end // now get all symbols from the buffer for(u32 l=1; l<=8; l++) { /* l = 1,2,3,4,5,6,7,8 */ for(u32 i=0; i < lenHisto[(l&7) /* 1,2,3,4,5,6,7,0 */]; i++, code++) { decoder->len[code] = (l&7)+1; /* len = 2,3,4,5,6,7,8,1 */ decoder->symbol[code] = 0; for(u32 j=0; jlen[code]; j++) ((u8*) &decoder->symbol[code])[j] = buf[pos++]; // note this enforces 'little endian' symbols } } if (decoder->zeroTerminated) lenHisto[0]++; // fill unused symbols with text "corrupt". Gives a chance to detect corrupted code sequences (if there are unused symbols). while(code<255) { decoder->symbol[code] = FSST_CORRUPT; decoder->len[code++] = 8; } return pos; } // runtime check for simd inline size_t _compressImpl(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) { #ifndef NONOPT_FSST if (simd && fsst_hasAVX512()) return compressSIMD(*e->symbolTable, e->simdbuf, nlines, lenIn, strIn, size, output, lenOut, strOut, simd); #endif (void) simd; return compressBulk(*e->symbolTable, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch); } size_t compressImpl(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], bool noSuffixOpt, bool avoidBranch, int simd) { return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd); } // adaptive choosing of scalar compression method based on symbol length histogram inline size_t _compressAuto(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) { bool avoidBranch = false, noSuffixOpt = false; if (100*e->symbolTable->lenHisto[1] > 65*e->symbolTable->nSymbols && 100*e->symbolTable->suffixLim > 95*e->symbolTable->lenHisto[1]) { noSuffixOpt = true; } else if ((e->symbolTable->lenHisto[0] > 24 && e->symbolTable->lenHisto[0] < 92) && (e->symbolTable->lenHisto[0] < 43 || e->symbolTable->lenHisto[6] + e->symbolTable->lenHisto[7] < 29) && (e->symbolTable->lenHisto[0] < 72 || e->symbolTable->lenHisto[2] < 72)) { avoidBranch = true; } return _compressImpl(e, nlines, lenIn, strIn, size, output, lenOut, strOut, noSuffixOpt, avoidBranch, simd); } size_t compressAuto(Encoder *e, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[], int simd) { return _compressAuto(e, nlines, lenIn, strIn, size, output, lenOut, strOut, simd); } // the main compression function (everything automatic) extern "C" size_t fsst_compress(fsst_encoder_t *encoder, size_t nlines, const size_t lenIn[], const u8 *strIn[], size_t size, u8 *output, size_t *lenOut, u8 *strOut[]) { // to be faster than scalar, simd needs 64 lines or more of length >=12; or fewer lines, but big ones (totLen > 32KB) size_t totLen = accumulate(lenIn, lenIn+nlines, 0); int simd = totLen > nlines*12 && (nlines > 64 || totLen > (size_t) 1<<15); return _compressAuto((Encoder*) encoder, nlines, lenIn, strIn, size, output, lenOut, strOut, 3*simd); } /* deallocate encoder */ extern "C" void fsst_destroy(fsst_encoder_t* encoder) { Encoder *e = (Encoder*) encoder; delete e; } /* very lazy implementation relying on export and import */ extern "C" fsst_decoder_t fsst_decoder(fsst_encoder_t *encoder) { u8 buf[sizeof(fsst_decoder_t)]; u32 cnt1 = fsst_export(encoder, buf); fsst_decoder_t decoder; u32 cnt2 = fsst_import(&decoder, buf); assert(cnt1 == cnt2); (void) cnt1; (void) cnt2; return decoder; }