// --------------------------------------------------------------------------- // Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Includes work from abseil-cpp (https://github.com/abseil/abseil-cpp) // with modifications. // // Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // --------------------------------------------------------------------------- #ifndef PHMAP_CONTAINER_BTREE_TEST_H_ #define PHMAP_CONTAINER_BTREE_TEST_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" #include "parallel_hashmap/btree.h" #include "parallel_hashmap/phmap.h" namespace phmap { namespace test_internal { // A type that counts number of occurrences of the type, the live occurrences of // the type, as well as the number of copies, moves, swaps, and comparisons that // have occurred on the type. This is used as a base class for the copyable, // copyable+movable, and movable types below that are used in actual tests. Use // InstanceTracker in tests to track the number of instances. class BaseCountedInstance { public: explicit BaseCountedInstance(size_t x) : value_(x) { ++num_instances_; ++num_live_instances_; } BaseCountedInstance(const BaseCountedInstance& x) : value_(x.value_), is_live_(x.is_live_) { ++num_instances_; if (is_live_) ++num_live_instances_; ++num_copies_; } BaseCountedInstance(BaseCountedInstance&& x) : value_(x.value_), is_live_(x.is_live_) { x.is_live_ = false; ++num_instances_; ++num_moves_; } ~BaseCountedInstance() { --num_instances_; if (is_live_) --num_live_instances_; } BaseCountedInstance& operator=(const BaseCountedInstance& x) { value_ = x.value_; if (is_live_) --num_live_instances_; is_live_ = x.is_live_; if (is_live_) ++num_live_instances_; ++num_copies_; return *this; } BaseCountedInstance& operator=(BaseCountedInstance&& x) { value_ = x.value_; if (is_live_) --num_live_instances_; is_live_ = x.is_live_; x.is_live_ = false; ++num_moves_; return *this; } bool operator==(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ == x.value_; } bool operator!=(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ != x.value_; } bool operator<(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ < x.value_; } bool operator>(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ > x.value_; } bool operator<=(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ <= x.value_; } bool operator>=(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ >= x.value_; } phmap::weak_ordering compare(const BaseCountedInstance& x) const { ++num_comparisons_; return value_ < x.value_ ? phmap::weak_ordering::less : value_ == x.value_ ? phmap::weak_ordering::equivalent : phmap::weak_ordering::greater; } size_t value() const { if (!is_live_) std::abort(); return value_; } friend std::ostream& operator<<(std::ostream& o, const BaseCountedInstance& v) { return o << "[value:" << v.value() << "]"; } // Implementation of efficient swap() that counts swaps. static void SwapImpl( BaseCountedInstance& lhs, // NOLINT(runtime/references) BaseCountedInstance& rhs) { // NOLINT(runtime/references) using std::swap; swap(lhs.value_, rhs.value_); swap(lhs.is_live_, rhs.is_live_); ++BaseCountedInstance::num_swaps_; } private: friend class InstanceTracker; size_t value_; // Indicates if the value is live, ie it hasn't been moved away from. bool is_live_ = true; // Number of instances. static size_t num_instances_; // Number of live instances (those that have not been moved away from.) static size_t num_live_instances_; // Number of times that BaseCountedInstance objects were moved. static size_t num_moves_; // Number of times that BaseCountedInstance objects were copied. static size_t num_copies_; // Number of times that BaseCountedInstance objects were swapped. static size_t num_swaps_; // Number of times that BaseCountedInstance objects were compared. static size_t num_comparisons_; }; // Helper to track the BaseCountedInstance instance counters. Expects that the // number of instances and live_instances are the same when it is constructed // and when it is destructed. class InstanceTracker { public: InstanceTracker() : start_instances_(BaseCountedInstance::num_instances_), start_live_instances_(BaseCountedInstance::num_live_instances_) { ResetCopiesMovesSwaps(); } ~InstanceTracker() { if (instances() != 0) std::abort(); if (live_instances() != 0) std::abort(); } // Returns the number of BaseCountedInstance instances both containing valid // values and those moved away from compared to when the InstanceTracker was // constructed size_t instances() const { return BaseCountedInstance::num_instances_ - start_instances_; } // Returns the number of live BaseCountedInstance instances compared to when // the InstanceTracker was constructed size_t live_instances() const { return BaseCountedInstance::num_live_instances_ - start_live_instances_; } // Returns the number of moves on BaseCountedInstance objects since // construction or since the last call to ResetCopiesMovesSwaps(). size_t moves() const { return BaseCountedInstance::num_moves_ - start_moves_; } // Returns the number of copies on BaseCountedInstance objects since // construction or the last call to ResetCopiesMovesSwaps(). size_t copies() const { return BaseCountedInstance::num_copies_ - start_copies_; } // Returns the number of swaps on BaseCountedInstance objects since // construction or the last call to ResetCopiesMovesSwaps(). size_t swaps() const { return BaseCountedInstance::num_swaps_ - start_swaps_; } // Returns the number of comparisons on BaseCountedInstance objects since // construction or the last call to ResetCopiesMovesSwaps(). size_t comparisons() const { return BaseCountedInstance::num_comparisons_ - start_comparisons_; } // Resets the base values for moves, copies, comparisons, and swaps to the // current values, so that subsequent Get*() calls for moves, copies, // comparisons, and swaps will compare to the situation at the point of this // call. void ResetCopiesMovesSwaps() { start_moves_ = BaseCountedInstance::num_moves_; start_copies_ = BaseCountedInstance::num_copies_; start_swaps_ = BaseCountedInstance::num_swaps_; start_comparisons_ = BaseCountedInstance::num_comparisons_; } private: size_t start_instances_; size_t start_live_instances_; size_t start_moves_; size_t start_copies_; size_t start_swaps_; size_t start_comparisons_; }; // Copyable, not movable. class CopyableOnlyInstance : public BaseCountedInstance { public: explicit CopyableOnlyInstance(size_t x) : BaseCountedInstance(x) {} CopyableOnlyInstance(const CopyableOnlyInstance& rhs) = default; CopyableOnlyInstance& operator=(const CopyableOnlyInstance& rhs) = default; friend void swap(CopyableOnlyInstance& lhs, CopyableOnlyInstance& rhs) { BaseCountedInstance::SwapImpl(lhs, rhs); } static bool supports_move() { return false; } }; // Copyable and movable. class CopyableMovableInstance : public BaseCountedInstance { public: explicit CopyableMovableInstance(size_t x) : BaseCountedInstance(x) {} CopyableMovableInstance(const CopyableMovableInstance& rhs) = default; CopyableMovableInstance(CopyableMovableInstance&& rhs) = default; CopyableMovableInstance& operator=(const CopyableMovableInstance& rhs) = default; CopyableMovableInstance& operator=(CopyableMovableInstance&& rhs) = default; friend void swap(CopyableMovableInstance& lhs, CopyableMovableInstance& rhs) { BaseCountedInstance::SwapImpl(lhs, rhs); } static bool supports_move() { return true; } }; // Only movable, not default-constructible. class MovableOnlyInstance : public BaseCountedInstance { public: explicit MovableOnlyInstance(size_t x) : BaseCountedInstance(x) {} MovableOnlyInstance(MovableOnlyInstance&& other) = default; MovableOnlyInstance& operator=(MovableOnlyInstance&& other) = default; friend void swap(MovableOnlyInstance& lhs, MovableOnlyInstance& rhs) { BaseCountedInstance::SwapImpl(lhs, rhs); } static bool supports_move() { return true; } }; } // namespace test_internal namespace priv { // Like remove_const but propagates the removal through std::pair. template struct remove_pair_const { using type = typename std::remove_const::type; }; template struct remove_pair_const > { using type = std::pair::type, typename remove_pair_const::type>; }; // Utility class to provide an accessor for a key given a value. The default // behavior is to treat the value as a pair and return the first element. template struct KeyOfValue { struct type { const K& operator()(const V& p) const { return p.first; } }; }; // Partial specialization of KeyOfValue class for when the key and value are // the same type such as in set<> and btree_set<>. template struct KeyOfValue { struct type { const K& operator()(const K& k) const { return k; } }; }; inline char* GenerateDigits(char buf[16], unsigned val, unsigned maxval) { assert(val <= maxval); constexpr unsigned kBase = 64; // avoid integer division. unsigned p = 15; buf[p--] = 0; while (maxval > 0) { buf[p--] = ' ' + (val % kBase); val /= kBase; maxval /= kBase; } return buf + p + 1; } template struct Generator { int maxval; explicit Generator(int m) : maxval(m) {} K operator()(int i) const { assert(i <= maxval); return K(i); } }; #if 0 template <> struct Generator { int maxval; explicit Generator(int m) : maxval(m) {} phmap::Time operator()(int i) const { return phmap::FromUnixMillis(i); } }; #endif template <> struct Generator { int maxval; explicit Generator(int m) : maxval(m) {} std::string operator()(int i) const { char buf[16]; return GenerateDigits(buf, i, maxval); } }; template struct Generator > { Generator::type> tgen; Generator::type> ugen; explicit Generator(int m) : tgen(m), ugen(m) {} std::pair operator()(int i) const { return std::make_pair(tgen(i), ugen(i)); } }; // Generate n values for our tests and benchmarks. Value range is [0, maxval]. inline std::vector GenerateNumbersWithSeed(size_t n, int maxval, int seed) { // NOTE: Some tests rely on generated numbers not changing between test runs. // We use std::minstd_rand0 because it is well-defined, but don't use // std::uniform_int_distribution because platforms use different algorithms. std::minstd_rand0 rng(seed); std::vector values; phmap::flat_hash_set unique_values; if (values.size() < n) { for (size_t i = values.size(); i < n; i++) { int value; do { value = static_cast(rng()) % (maxval + 1); } while (!unique_values.insert(value).second); values.push_back(value); } } return values; } // Generates n values in the range [0, maxval]. template std::vector GenerateValuesWithSeed(size_t n, int maxval, int seed) { const std::vector nums = GenerateNumbersWithSeed(n, maxval, seed); Generator gen(maxval); std::vector vec; vec.reserve(n); for (size_t i = 0; i < n; i++) { vec.push_back(gen(nums[i])); } return vec; } } // namespace priv namespace priv { // This is a stateful allocator, but the state lives outside of the // allocator (in whatever test is using the allocator). This is odd // but helps in tests where the allocator is propagated into nested // containers - that chain of allocators uses the same state and is // thus easier to query for aggregate allocation information. template class CountingAllocator : public std::allocator { public: using Alloc = std::allocator; using AllocTraits = typename std::allocator_traits; using pointer = typename AllocTraits::pointer; using size_type = typename AllocTraits::size_type; CountingAllocator() : bytes_used_(nullptr) {} explicit CountingAllocator(int64_t* b) : bytes_used_(b) {} template CountingAllocator(const CountingAllocator& x) : Alloc(x), bytes_used_(x.bytes_used_) {} pointer allocate(size_type n, std::allocator_traits>::const_pointer hint = nullptr) { assert(bytes_used_ != nullptr); *bytes_used_ += n * sizeof(T); return AllocTraits::allocate(*this, n, hint); } void deallocate(pointer p, size_type n) { AllocTraits::deallocate(*this, p, n); assert(bytes_used_ != nullptr); *bytes_used_ -= n * sizeof(T); } template class rebind { public: using other = CountingAllocator; }; friend bool operator==(const CountingAllocator& a, const CountingAllocator& b) { return a.bytes_used_ == b.bytes_used_; } friend bool operator!=(const CountingAllocator& a, const CountingAllocator& b) { return !(a == b); } int64_t* bytes_used_; }; } // namespace priv } // namespace phmap #endif // PHMAP_CONTAINER_BTREE_TEST_H_