#include "Config.hh" #include "simplify.hh" #include "Cleanup.hh" #include "properties/Coordinate.hh" #include "properties/Symbol.hh" #include "SympyCdb.hh" #ifdef MATHEMATICA_FOUND #include "MMACdb.hh" #endif using namespace cadabra; simplify::simplify(const Kernel& k, Ex& tr) : Algorithm(k, tr) { } bool simplify::can_apply(iterator st) { // For \components nodes we need to map at the level of the individual // component values, not the top \components node. if(*st->name=="\\components") return false; if(*st->name=="\\equals") return false; if(*st->name=="\\comma") return false; if(*st->name=="\\wedge") return false; // If this is a sum, determine if there are any wedge products (we // do not pass enough info to sympy yet to enable it to simplify these). if(*st->name=="\\sum") { for(sibling_iterator sib=tr.begin(st), end=tr.end(st); sib!=end; ++sib) if(*sib->name=="\\wedge") return false; } // Check that any occuring indices are 'harmless', in the sense that // sympy knows how to handle them. left.clear(); index_factors.clear(); index_map_t ind_free, ind_dummy; classify_indices(st, ind_free, ind_dummy); // print_classify_indices(std::cerr, st); bool still_ok=true; // Determine if any of the free indices are harmless (Coordinates or Symbols). for(auto& ind: ind_free) { const Coordinate *cdn=kernel.properties.get(ind.second, true); const Symbol *smb=kernel.properties.get(ind.second, true); if(cdn==0 && smb==0) { still_ok=false; break; } } if(still_ok && ind_dummy.size()==0) return true; // In a product, it is still possible that there is a sub-product which // contains no indices. if(*st->name=="\\prod") { // Find the factors in the product which have a proper index on them. Do this by // starting at the index, and if it is not coordinate or symbol, then go up until we // reach the first child level of the product. for(auto& ind: ind_free) { const Coordinate *cdn=kernel.properties.get(ind.second, true); const Symbol *smb=kernel.properties.get(ind.second, true); if(cdn==0 && smb==0) { auto fac=tr.parent(ind.second); while(tr.parent(fac)!=iterator(st)) fac=tr.parent(fac); index_factors.insert(fac); } } for(auto& ind: ind_dummy) { const Coordinate *cdn=kernel.properties.get(ind.second, true); const Symbol *smb=kernel.properties.get(ind.second, true); if(cdn==0 && smb==0) { auto fac=tr.parent(ind.second); while(tr.parent(fac)!=iterator(st)) fac=tr.parent(fac); index_factors.insert(fac); } } sibling_iterator sib=tr.begin(st); while(sib!=tr.end(st)) { if(index_factors.find(iterator(sib))==index_factors.end()) left.push_back(sib); ++sib; } return left.size()>0; } return false; } Algorithm::result_t simplify::apply(iterator& it) { std::vector wrap; std::vector args_; if(left.size()>0) { Ex prod("\\prod"); for(auto& fac: left) prod.append_child(prod.begin(), fac); auto top=prod.begin(); // std::cerr << "Feeding to sympy " << prod << std::endl; switch(kernel.scalar_backend) { case Kernel::scalar_backend_t::sympy: wrap.push_back("simplify"); { ScopedProgressGroup group(pm, "sympy"); sympy::apply(kernel, prod, top, wrap, args_, ""); } break; case Kernel::scalar_backend_t::mathematica: #ifdef MATHEMATICA_FOUND wrap.push_back("FullSimplify"); // args_.push_back("Trig -> False"); { ScopedProgressGroup(pm, "mathematica"); MMA::apply_mma(kernel, prod, top, wrap, args_, ""); } #endif break; } // Now remove the non-index carrying factors and replace with // the factors of 'prod' just simplified. tr.insert_subtree(*left.begin(), top); // std::cerr << "Before erasing " << Ex(it) << std::endl; for(auto& kl: left) tr.erase(kl); // std::cerr << "After erasing " << Ex(it) << std::endl; return result_t::l_applied; } else { switch(kernel.scalar_backend) { case Kernel::scalar_backend_t::sympy: wrap.push_back("simplify"); if(pm) pm->group("sympy"); sympy::apply(kernel, tr, it, wrap, args_, ""); if(pm) pm->group(); break; case Kernel::scalar_backend_t::mathematica: #ifdef MATHEMATICA_FOUND wrap.push_back("FullSimplify"); // args_.push_back("Trig -> False"); if(pm) pm->group("mathematica"); MMA::apply_mma(kernel, tr, it, wrap, args_, ""); if(pm) pm->group(); #endif break; } it.skip_children(); return result_t::l_applied; } }