def test01(): __cdbkernel__ = create_scope() def post_process(ex): distribute(ex) eliminate_kronecker(ex) sort_product(ex) canonicalise(ex) collect_terms(ex) \delta{#}::KroneckerDelta; \GAMMA{#}::GammaMatrix; ex:=\GAMMA^{m} \GAMMA^{n p q} \GAMMA^{n p q m r} \delta^{a b} \delta^{c r}; # display(ex) tst:= \GAMMA^{m} \GAMMA^{n p q} \GAMMA^{n p q m c} \delta^{a b} - @(ex); # display(tst) assert(tst==0) print("Test 01 passed") test01() def test02(): def orderx(var, n): cn=Ex(n) drop_weight(var, $field=@(cn)$) return var {A,B,C}::Weight(label=field, value=1); ex:=A B C + A B + A A + A C + A B C D; orderx(ex, 2) tst:= A B C + A B C D - @(ex); assert(tst==0) print("Test 02 passed") test02() def test03(): __cdbkernel__ = create_scope() ex:= Q Q Q Q Q Q; converge(ex): substitute(_, $Q->A+B, A B->3$, repeat=True) distribute(_) tst:= A A A A A A + 18 A A A A + 135 A A + 540 + 18 B B B B + 135 B B + B B B B B B - @(ex); assert(tst==0) print("Test 03 passed") test03() # # \partial{#}::PartialDerivative; # ex:=A_{m n} \partial_{r}{ B^{m n} } \partial^{r}{ Q } + \partial_{m}{ A^{m} } R; # num=1 # for partial in ex["\\partial"]: # partial.name="k"+str(num) # num+=1 # # ex; # # # this one still not working?! Does not stop and restart at second product. # \partial{#}::PartialDerivative; # ex:=A_{m n} \partial_{r}{ B^{m n} } \partial^{r}{ Q } + \partial_{m}{ A^{m} } R; # for prod in ex["\\prod"]: # num=1 # for partial in prod["\\partial"]: # partial.name="k"+str(num) # num+=1 # # ex; # print(tree(ex)) # # # \partial{#}::PartialDerivative; # ex:=A_{m n} \partial_{r}{ 3 B^{m n} } \partial^{r}{ 2 Q } + \partial_{m}{ 5 A^{m} } R; # for prod in ex["\\prod"]: # num=1 # for partial in prod["\\partial"]: # for index in partial.indices(): # print(index) # num+=1 # # ex; # print(tree(ex)) # def test04(): __cdbkernel__ = create_scope() \partial{#}::PartialDerivative; \dot{#}::Accent; NoMomList= [ Ex(r'A_{a? b?}'), Ex(r'T{#}'), Ex(r'S(t)'), Ex(r'a**2'), Ex(r"V'(\phi)"), Ex(r"\partial_{0}{a}") ] ex:=Q_{m n \dot{r} p q s_{2} k} + T_{m n \dot{r} p q s_{2} k} + a**2 \partial_{0}{a} A_{m n} \partial_{\dot{r}}{ B_{p q} } S(t) V'(\phi) \partial_{s_{2}}{ C } \partial_{0}{D_{k}} ; terms=ex["\\sum"].__next__().children() for term in terms: if term.name=="\\prod": num=1 for factor in term.children(): matches = map(lambda x: x.matches(factor), NoMomList) if not True in matches: if factor.name=="\\partial": for index in factor.own_indices(): k = Ex("k"+str(num)) factor.insert(k).append_child(index) factor.insert(Ex("I")) for arg in factor.args(): matches = map(lambda x: x.matches(arg), NoMomList) if not True in matches: arg.append_child(Ex("k"+str(num))) factor.insert(arg) factor.erase() num+=1 else: factor.append_child(Ex("k"+str(num))) num+=1 else: matches = map(lambda x: x.matches(term), NoMomList) if not True in matches: term.append_child(Ex("k1")) tst:= Q_{m n \dot{r} p q s_{2} k}(k1) + T_{m n \dot{r} p q s_{2} k} + a**2 \partial_{0}{a} A_{m n} k1_{\dot{r}} I B_{p q}(k1) S(t) V'(\phi) k2_{s_{2}} I C(k2) k3_{0} I D_{k}(k3) - @(ex); assert(tst==0) print("Test 04 passed") test04() def test05(): ex:= A_{m n} B^{0 m} + C_{n}; lst=[] for n in ex: lst.append(str(n)) tst=['A_{m n} B^{0 m} + C_{n}', 'A_{m n} B^{0 m}', 'A_{m n}', 'm', 'n', 'B^{0 m}', '0', 'm', 'C_{n}', 'n'] assert(tst==lst) print("Test 05 passed") test05() # ex:=A + B + C; # lst=[] # for sum in ex["\\sum"]: # for term in sum: # lst.append(term.name) # # assert(lst==["A", "B", "C"]) # print("Test 05 passed") # ex:= Q ( A_{m n} (Q+S) + B_{m n} ) + D_{m n}; # for term in ex.top().terms(): # print("term:") # for factor in term.factors(): # print("factor:") # print(factor) # # # \nabla{#}::Derivative; # ex:= \nabla_{q}{ T_{m n}^{p} }; # for term in ex.top().terms(): # def test_expand(ex): tst:= (A??)^{\dagger}; for node in ex: if tst.matches( node ): rep=$P$ lst=[] for prod in node["\\prod"]: for factor in prod.factors(): lst.append($ @(factor) $) for factor in list(reversed(lst)): rep.top().append_child($ @(factor)^{\dagger} $) rep.top().name=r"\prod" node.replace(rep) return ex def test06(): __cdbkernel__ = create_scope() \dagger::Symbol; ex:= (A B C)^{\dagger} + Q + (D E)^{\dagger}; test_expand(ex) tst:= C^{\dagger} B^{\dagger} A^{\dagger} + Q + E^{\dagger} D^{\dagger} - @(ex); assert(tst==0) print("Test 06 passed") test06() def test07(): __cdbkernel__ = create_scope() {a,b,c,d#,z}::Indices. ex:= 1/2 D_{b} C^{a b c} A_{c}; fi=ex.top().free_indices() assert(next(fi).name=='a') print("Test 07a passed") ex:= 1/2 C^{a b c} D_{b} A_{c}; fi=ex.top().free_indices() assert(next(fi).name=='a') print("Test 07b passed") ex:= 1/2 D_{b} A_{c} C^{a b c}; fi=ex.top().free_indices() assert(next(fi).name=='a') print("Test 07c passed") test07() def test08(): __cdbkernel__ = create_scope() ex:= A C + B D + C ; for term in ex.top().terms(): term.multiplier *= 3 tst:= 3 A C + 3 B D + 3 C - @(ex); assert(tst==0) print("Test 08 passed") test08() def test09(): __cdbkernel__ = create_scope() ex:= A + B(C+D) + Q(E); for node in ex: num=2 # print("node", node) for term in node.terms(): # print("term", term) term.multiplier *= num num+=1 tst:= 2A + 3 B(2C+3D) + 4Q(2E) - @(ex); assert(tst==0) print("Test 09 passed") test09() def test10(): __cdbkernel__ = create_scope() A_{m n p}::TableauSymmetry(shape={1,1}, indices={1,2}); p = TableauSymmetry.get($A_{m n p}$) p.attach($B_{m n p}$) ex:= B_{m n p} - B_{m p n}; meld(ex) tst:= 2 B_{m n p} - @(ex); assert(tst==0) print("Test 10 passed") test10() def test11(): __cdbkernel__ = create_scope() R_{m n p q}::RiemannTensor; p = RiemannTensor.get($R_{m n p q}$) try: p.attach($A_{m n}$) assert(1==0) except RuntimeError: print("Test 11 passed") test11() def test12(): __cdbkernel__ = create_scope() sub:=3 q; ex:=A^{@(sub)}; tst:= A^{3*q} - @(ex); assert(tst==0) print("Test 12 passed") test12() def test13(): __cdbkernel__ = create_scope() {m,n}::Indices(values={a,b}); {\mu,\nu}::Indices(values={0,1,2,3}); assert( $A_{m n}$.matches($A_{a b}$) == True ) assert( $A_{m n}$.matches($A_{a a}$) == True ) assert( $A_{m n}$.matches($A_{a c}$) == False ) assert( $A_{m n}$.matches($A_{0 1}$) == False ) assert( $A_{\mu\nu}$.matches($A_{0 1}$) == True ) assert( $A_{\mu\nu}$.matches($A^{0 1}$) == True ) assert( $A_{\mu\nu}$.matches($A_{0 4}$) == False ) print("Test 13 passed") test13() def test14(): __cdbkernel__ = create_scope() ex:={A,B} ~ {C,D}; assert(ex==${A,B,C,D}$) print("Test 14a passed") ex1:= {A,B}; ex2:= {C,D}; ex3 = join(ex1, ex2) assert(ex3==${A,B,C,D}$) print("Test 14b passed") ex1:= A; ex2:= {C,D}; ex3 = join(ex1, ex2) assert(ex3==${A,C,D}$) print("Test 14c passed") ex1:= {A,B}; ex2:= C; ex3 = join(ex1, ex2) assert(ex3==${A,B,C}$) print("Test 14d passed") ex1:= A; ex2:= C; ex3 = join(ex1, ex2) assert(ex3==${A,C}$) print("Test 14e passed") test14()