#include #include "Compare.hh" #include "Algorithm.hh" // FIXME: only needed because index_iterator is in there #include #include #include "properties/Indices.hh" #include "properties/Coordinate.hh" #include "properties/ImplicitIndex.hh" #include "properties/SelfCommutingBehaviour.hh" #include "properties/CommutingAsSum.hh" #include "properties/CommutingAsProduct.hh" #include "properties/CommutingBehaviour.hh" #include "properties/DifferentialForm.hh" #include "properties/DiracBar.hh" #include "properties/Integer.hh" #include "properties/SortOrder.hh" //#define DEBUG 1 #ifdef DEBUG #define DEBUGLN(ln) ln #else #define DEBUGLN(ln) #endif namespace cadabra { int Ex_comparator::offset=0; int subtree_compare(const Properties *properties, Ex::iterator one, Ex::iterator two, int mod_prel, bool, int compare_multiplier, bool literal_wildcards) { // std::cerr << "comparing " << Ex(one) << " with " << Ex(two) << " " << mod_prel << ", " << checksets << std::endl; // The logic is to compare successive aspects of the two objects, returning a // no-match code if a difference is found at a particular level, or continuing // further down the line if there still is a match. // Compare multipliers. Skip this step if one of the objects is a rational and the // other not, as in that case we are matching values to symbols. if( one->is_rational()==two->is_rational() ) { if(compare_multiplier==-2 && !two->is_name_wildcard() && !one->is_name_wildcard()) if(one->multiplier != two->multiplier) { if(*one->multiplier < *two->multiplier) return 2; else return -2; } } int mult=2; // Handle object wildcards and comparison if(!literal_wildcards) { if(one->is_object_wildcard() || two->is_object_wildcard()) return 0; } // Handle mismatching node names. if(one->name!=two->name) { // std::cerr << *one->name << " != " << *two->name << std::endl; if(literal_wildcards) { if(*one->name < *two->name) return mult; else return -mult; } DEBUGLN( std::cerr << "auto? " << one->is_autodeclare_wildcard() << ", " << two->is_numbered_symbol() << std::endl; ); if( (one->is_autodeclare_wildcard() && two->is_numbered_symbol()) || (two->is_autodeclare_wildcard() && one->is_numbered_symbol()) ) { if( one->name_only() != two->name_only() ) { if(*one->name < *two->name) return mult; else return -mult; } } else if( one->is_name_wildcard()==false && two->is_name_wildcard()==false ) { if(*one->name < *two->name) return mult; else return -mult; } DEBUGLN( std::cerr << "match despite difference: " << *one->name << " and " << *two->name << std::endl; ); } // Compare parent relations. if(mod_prel<=-2) { str_node::parent_rel_t p1=one->fl.parent_rel; str_node::parent_rel_t p2=two->fl.parent_rel; if(p1!=p2) { return (p10) --mod_prel; if(compare_multiplier==0) compare_multiplier=-2; else if(compare_multiplier>0) --compare_multiplier; for(;;) { Ex::sibling_iterator sib1=one.begin(), sib2=two.begin(); while(sib1!=one.end()) { if(sib1->is_index() == do_indices) { int ret=subtree_compare(properties, sib1,sib2, mod_prel, true /* checksets */, compare_multiplier, literal_wildcards); // std::cerr << "result " << ret << std::endl; if(abs(ret)>1) return ret/abs(ret)*mult; if(ret!=0 && remember_ret==0) remember_ret=ret; } ++sib1; ++sib2; } if(remember_ret!=0) break; if(!do_indices) do_indices=true; else break; } return remember_ret; } bool tree_less(const Properties* properties, const Ex& one, const Ex& two, int mod_prel, bool checksets, int compare_multiplier) { return subtree_less(properties, one.begin(), two.begin(), mod_prel, checksets, compare_multiplier); } bool tree_equal(const Properties* properties, const Ex& one, const Ex& two, int mod_prel, bool checksets, int compare_multiplier) { return subtree_equal(properties, one.begin(), two.begin(), mod_prel, checksets, compare_multiplier); } bool tree_exact_less(const Properties* properties, const Ex& one, const Ex& two, int mod_prel, bool checksets, int compare_multiplier, bool literal_wildcards) { return subtree_exact_less(properties, one.begin(), two.begin(), mod_prel, checksets, compare_multiplier, literal_wildcards); } bool tree_exact_equal(const Properties* properties, const Ex& one, const Ex& two, int mod_prel, bool checksets, int compare_multiplier, bool literal_wildcards) { return subtree_exact_equal(properties, one.begin(), two.begin(), mod_prel, checksets, compare_multiplier, literal_wildcards); } bool subtree_less(const Properties* properties, Ex::iterator one, Ex::iterator two, int mod_prel, bool checksets, int compare_multiplier) { int cmp=subtree_compare(properties, one, two, mod_prel, checksets, compare_multiplier); if(cmp==2) return true; return false; } bool subtree_equal(const Properties* properties, Ex::iterator one, Ex::iterator two, int mod_prel, bool checksets, int compare_multiplier) { int cmp=subtree_compare(properties, one, two, mod_prel, checksets, compare_multiplier); if(abs(cmp)<=1) return true; return false; } bool subtree_exact_less(const Properties* properties, Ex::iterator one, Ex::iterator two, int mod_prel, bool checksets, int compare_multiplier, bool literal_wildcards) { int cmp=subtree_compare(properties, one, two, mod_prel, checksets, compare_multiplier, literal_wildcards); //std::cerr << "comparing " << Ex(one) << " with " << Ex(two) << " = " << cmp << std::endl; if(cmp>0) return true; return false; } bool subtree_exact_equal(const Properties* properties, Ex::iterator one, Ex::iterator two, int mod_prel, bool checksets, int compare_multiplier, bool literal_wildcards) { int cmp=subtree_compare(properties, one, two, mod_prel, checksets, compare_multiplier, literal_wildcards); // std::cout << *one->name << " == " << *two->name << " : " << cmp << std::endl; if(cmp==0) return true; return false; } tree_less_obj::tree_less_obj(const Properties* k) : properties(k) { } bool tree_less_obj::operator()(const Ex& one, const Ex& two) const { return tree_less(properties, one, two); } tree_less_modprel_obj::tree_less_modprel_obj(const Properties* k) : properties(k) { } bool tree_less_modprel_obj::operator()(const Ex& one, const Ex& two) const { return tree_less(properties, one, two, 0); } tree_equal_obj::tree_equal_obj(const Properties* k) : properties(k) { } bool tree_equal_obj::operator()(const Ex& one, const Ex& two) const { return tree_equal(properties, one, two); } tree_exact_less_obj::tree_exact_less_obj(const Properties *p) : properties(p) { } bool tree_exact_less_obj::operator()(const Ex& one, const Ex& two) const { return tree_exact_less(properties, one, two); } tree_exact_less_no_wildcards_obj::tree_exact_less_no_wildcards_obj() { properties=0; } bool tree_exact_less_no_wildcards_obj::operator()(const Ex& one, const Ex& two) const { return tree_exact_less(properties, one, two, -2, true, 0, true); } bool tree_exact_less_no_wildcards_mod_prel_obj::operator()(const Ex& one, const Ex& two) const { return tree_exact_less(properties, one, two, 0, true, -2, true); } bool tree_exact_equal_obj::operator()(const Ex& one, const Ex& two) const { return tree_exact_equal(properties, one, two); } tree_exact_less_mod_prel_obj::tree_exact_less_mod_prel_obj(const Properties *p) : properties(p) { } bool tree_exact_less_mod_prel_obj::operator()(const Ex& one, const Ex& two) const { return tree_exact_less(properties, one, two, 0, true, -2, true); } bool tree_exact_equal_mod_prel_obj::operator()(const Ex& one, const Ex& two) const { return tree_exact_equal(properties, one, two, 0, true, -2, true); } bool tree_exact_less_for_indexmap_obj::operator()(const Ex& one, const Ex& two) const { return tree_exact_less(0, one, two, -2 /* mod_prel, was 0 */, true, -2 /* compare_multiplier, was 0 */, true); } //bool operator==(const Ex& first, const Ex& second) // { // return tree_exact_equal(properties, first, second, 0, true, -2, true); // } // void Ex_comparator::clear() { replacement_map.clear(); subtree_replacement_map.clear(); index_value_map.clear(); factor_locations.clear(); factor_moving_signs.clear(); } Ex_comparator::match_t Ex_comparator::match_subtree(const Ex& tr, Ex::iterator i1, Ex::iterator i2, Ex::iterator conditions) { auto ret = equal_subtree(i1, i2); if(ret==match_t::subtree_match || ret==match_t::node_match) { if(conditions==tr.end()) return ret; std::string error; if(satisfies_conditions(conditions, error)) return ret; else return match_t::no_match_greater; // FIXME: is that the right thing to do? } else return ret; } Ex_comparator::match_t Ex_comparator::equal_subtree(Ex::iterator i1, Ex::iterator i2, useprops_t use_props, bool ignore_parent_rel) { DEBUGLN( std::cerr << tab() << "equal_subtree with use_props = " << use_props << std::endl; ); ++offset; Ex::sibling_iterator i1end(i1); Ex::sibling_iterator i2end(i2); ++i1end; ++i2end; // When measuring depth (to determine if we need to use // properties or not), things like \dot{\alpha} should give the // same depth for \dot and for \alpha, because \dot is an // Accent. We use a predicate function to take care of this. auto depth_predicate = [this,use_props](const Ex::iterator& i) { if(use_props!=useprops_t::not_at_top) return true; const Accent *accent = properties.get(i); return (accent==0); }; bool first_call=true; match_t worst_mismatch=match_t::subtree_match; Ex::iterator rememberi1=i1; while(i1!=i1end && i2!=i2end) { useprops_t up = use_props; auto dist = Ex::distance(rememberi1, i1, depth_predicate); if(use_props==useprops_t::not_at_top) { if(dist!=0) up=useprops_t::always; else up=useprops_t::never; } bool ip = ignore_parent_rel && (dist==0); match_t mm=compare(i1, i2, first_call, up, ip); // DEBUGLN( std::cerr << "COMPARE " << *i1->name << ", " << *i2->name << " = " << static_cast(mm) << std::endl; ) first_call=false; switch(mm) { case match_t::no_match_indexpos_less: case match_t::no_match_indexpos_greater: worst_mismatch=mm; // FIXME: at the moment skipping children is the right thing to do // as we are assuming that the no_match_indexpos_... is the worst // thing that could have happened for this child subtree. See // also the FIXME below. i1.skip_children(); i2.skip_children(); break; case match_t::no_match_less: case match_t::no_match_greater: // As soon as we get a mismatch, return. return report(mm); case match_t::node_match: { size_t num1=Ex::number_of_children(i1); size_t num2=Ex::number_of_children(i2); if(num1==1 && i1.begin()->is_range_wildcard()) { // std::cerr << "comparing " << *i1->name << " with " << *i2->name << " " << num1 << " " << num2 << std::endl; return match_t::subtree_match; } // TODO: this is where we should decide what to do with // nodes which have sibling wildcards. Make a // 'compare_siblings'. We also need a // siblings_replacement_map in which we can store a // sibling range for a given sibling wildcard symbol, // e.g. a... -> i j k. This matching routine should walk // to the first non-range object in the pattern, and match // that. Once it is matched, it should store the resulting // map for any range object to the left. Then continue, // recursively, finding the second non-range object, and // again storing the range object map. Once a no-match // comes back, pop the match objects from the stack and // try to find the non-range object to the right of the match // reported earlier. // This slightly oversearches (we could keep track of how // many non-range objects are still to be matched in order // to restrict how far to the right a search should go), but in // practise this is probably not relevant (and can always be added). if(num1 < num2) return report(match_t::no_match_less); else if(num1 > num2) return report(match_t::no_match_greater); break; } case match_t::match_index_less: case match_t::match_index_greater: // If we have a match but different index names, remember this // mismatch, because it will determine our total result value. if(worst_mismatch==match_t::subtree_match) worst_mismatch=mm; // If indices by type but not name, we do not need to go // further down the tree. E.g. W_{\hat{\theta_1}} vs // W_{\hat{\theta_2}} compared at the index position. // The 'compare' has done a comparison of the entire // tree of the indices, no need to go down. i1.skip_children(); i2.skip_children(); break; case match_t::subtree_match: // If a match of the entire subtrees at i1 and i2 has been found, // we do not need to go down the child nodes of i1 and i2 anymore. i1.skip_children(); i2.skip_children(); break; } // Continue walking the tree downwards. DEBUGLN( std::cerr << tab() << "one down" << std::endl; ); ++i1; ++i2; } DEBUGLN( std::cerr << tab() << "equal_subtree done" << std::endl; ); return report(worst_mismatch); } Ex_comparator::Ex_comparator(const Properties& k) : properties(k), value_matches_index(false) { } void Ex_comparator::set_value_matches_index(bool v) { value_matches_index=v; } std::string Ex_comparator::tab() const { std::string ret; for(int i=0; iname << " a coordinate?" << std::endl; ); cdn1=properties.get(one, true); DEBUGLN( std::cerr << tab() << cdn1 << std::endl; ); } if(cdn1==0) implicit_pattern=true; else is_coordinate=true; } else if(one->is_integer()) is_number=true; // Various cases to be distinguished now: // - match index pattern to object // - match object pattern to object // - match coordinate to index // - everything else, which does not involve patterns/wildcards if(pattern || implicit_pattern) { // It is possible to match integers to implicit patterns (indices), provided // we know that the given index can take the found numerical value. // See basic.cdb/test26 for a simple example. // If we have a proper 'question mark' pattern, we always match to integers. if(two->is_rational() && implicit_pattern) { // Determine whether 'one' can take the value 'two'. //std::cerr << "**** can one take value two " << use_props << std::endl; const Integer *ip = 0; if(use_props==useprops_t::always) { DEBUGLN( std::cerr << tab() << "is " << *one->name << " an integer?" << std::endl; ); ip = properties.get(one, true); // 'true' to ignore parent rel. DEBUGLN( std::cerr << tab() << ip << std::endl; ); } if(ip==0) return report(match_t::no_match_less); bool lower_bdy=true, upper_bdy=true; multiplier_t from, to; if(ip->from.begin()==ip->from.end()) lower_bdy=false; else { if(!ip->from.begin()->is_rational()) return report(match_t::no_match_less); from = *ip->from.begin()->multiplier; } if(ip->to.begin()==ip->to.end()) upper_bdy=false; else { if(!ip->to.begin()->is_rational()) return report(match_t::no_match_less); to = *ip->to.begin()->multiplier; } if((lower_bdy && *two->multiplier < from) || (upper_bdy && *two->multiplier > to)) return report(match_t::no_match_less); // std::cerr << tab() << Ex(one) << tab() << "can take value " << *two->multiplier << std::endl; } // We want to search the replacement map for replacement rules which we have // constructed earlier, and discard the current match if it conflicts those // rules. This is to make sure that e.g. a pattern k1_a k2_a does not match // an expression k1_c k2_d. // // In order to ensure that a replacement rule for a lower index is also // triggering a rule for an upper index, we simply store both rules (see // below) so that searching for rules can remain simple. replacement_map_t::iterator loc=replacement_map.find(one); bool tested_full=true; // If this is a pattern with a non-zero number of children, // also search the pattern without the children (but not if // this node is an Accent, because then the child nodes are // very relevant). if(loc == replacement_map.end() && Ex::number_of_children(one)!=0) { DEBUGLN( std::cerr << tab() << "**** not found, trying without child nodes" << std::endl; ); if(properties.get(one)==0 ) { Ex tmp1(one); tmp1.erase_children(tmp1.begin()); loc = replacement_map.find(tmp1); tested_full=false; } } if(loc!=replacement_map.end()) { // We constructed a replacement rule for this node already at an earlier // stage. Need to make sure that that rule is consistent with what we // found now. int cmp; // If this is an index/pattern, try to match the whole index/pattern. if(tested_full) cmp=subtree_compare(&properties, (*loc).second.begin(), two, -2); else { Ex tmp2(two); tmp2.erase_children(tmp2.begin()); cmp=subtree_compare(&properties, (*loc).second.begin(), tmp2.begin(), -2); } DEBUGLN(std::cerr << " pattern " << two << " should be " << (*loc).second.begin() << " because that's what " << one << " was set to previously; result " << cmp << std::endl; ); if(cmp==0) return report(match_t::subtree_match); else if(cmp>0) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } else { // This index/pattern was not encountered earlier. If this node is an index, // check that the index types in pattern and object agree (if known, // otherwise assume they match). // If two is a rational, we have already checked that one can take this value. if(two->is_index() && !one->is_index() && !one->is_range_wildcard()) return report(match_t::no_match_indexpos_greater); if(one->is_index()) { DEBUGLN( std::cerr << tab() << "object one is index" << std::endl; ); const Indices *t1=0; const Indices *t2=0; if(use_props==useprops_t::always) { DEBUGLN( std::cerr << tab() << "is " << one << " an index?" << std::endl; ); t1=properties.get(one, false); DEBUGLN( std::cerr << tab() << "found for one: " << t1 << std::endl; ); if(two->is_rational()==false) { DEBUGLN( std::cerr << tab() << "is " << two << " an index?" << std::endl; ); t2=properties.get(two, false); DEBUGLN( std::cerr << tab() << t2 << std::endl; ); // It is still possible that t2 is a Coordinate and // t1 an Index which can take the value of the // coordinate. This happens when 'm' is an index // taking values {t,...}, you declare X^{m} to have // a property and then later ask if X^{t} has that // property. In that case X^{m} is object 1 and // X^{t} object 2, and we end up here (NOT in the // branch with both exchanged, which happens when // evaluate tries to determine if a rule for X^{t} // applies to an expression X^{m}). if(t1!=0 && t2!=t1) { auto ivals = std::find_if(t1->values.begin(), t1->values.end(), [&](const Ex& a) { if(subtree_compare(&properties, a.begin(), two, 0)==0) return true; else return false; }); if(ivals!=t1->values.end()) t2=t1; } } else { t2=t1; // We already know 'one' can take the value 'two', so in a sense t2 is in the same set as t1. DEBUGLN( std::cerr << tab() << two << " is rational" << std::endl; ); } } // Check parent rel if a) there is no Indices property for the indices, b) the index positions // are not free. Effectively this means that indices without property info get treated as // fixed-position indices. // FIXME: this is not entirely correct. If the indexpos does not match, going deeper may // still reveal that the mismatch is even worse. if(!ignore_parent_rel) if(t1==0 || t2==0 || (t1->position_type!=Indices::free && t2->position_type!=Indices::free)) if(one->fl.parent_rel != two->fl.parent_rel) { DEBUGLN( std::cerr << tab() << "parent_rels not the same" << std::endl;); return report( (one->fl.parent_rel < two->fl.parent_rel) ?match_t::no_match_indexpos_less:match_t::no_match_indexpos_greater ); } // If both indices have no Indices property, compare them by name and pretend they are // both in the same Indices set. if(two->is_rational()==false && !(t1==0 && t2==0)) { if( (t1 || t2) && implicit_pattern ) { if(t1 && t2) { if((*t1).set_name != (*t2).set_name) { if((*t1).set_name < (*t2).set_name) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } } else { // If we get here, 'one' or 'two' has an Indices property, and // the other one doesn't. So we do not know how to compare them, // except by name. Note that we should return something which is // symmetric if 'two' and 'one' had been exchanged! int dc = subtree_compare(&properties, one, two, 0); if(dc<0) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } } } } // See the documentation of substitute::can_apply for details about // how the replacement_map is supposed to work. In general, if we want // that e.g a found _{z} also leads to a replacement rule for (z), or // if we want that a found _{z} also leads to a replacement for ^{z}, // this needs to be added to the replacement map explicitly. DEBUGLN( std::cerr << "adding " << one << " -> " << two << " to replacement map " << std::endl; ); replacement_map[one]=two; // if this is an index, also store the pattern with the parent_rel flipped if(one->is_index()) { Ex cmptree1(one); Ex cmptree2(two); cmptree1.begin()->flip_parent_rel(); if(two->is_index()) cmptree2.begin()->flip_parent_rel(); replacement_map[cmptree1]=cmptree2; } // if this is a pattern and the pattern has a non-zero number of children, // also add the pattern without the children if(Ex::number_of_children(one)!=0) { Ex tmp1(one), tmp2(two); tmp1.erase_children(tmp1.begin()); tmp2.erase_children(tmp2.begin()); replacement_map[tmp1]=tmp2; } // and if this is a pattern also insert the one without the parent_rel if( /* one->is_name_wildcard() && */ one->is_index()) { //std::cerr << "storing pattern without pattern rel " << replacement_map.size() << std::endl; Ex tmp1(one), tmp2(two); tmp1.begin()->fl.parent_rel=str_node::p_none; tmp2.begin()->fl.parent_rel=str_node::p_none; // We do not want this pattern to be present already. auto fnd=replacement_map.find(tmp1); if(fnd!=replacement_map.end()) { throw InternalError("Attempting to duplicate replacement rule."); } // assert(replacement_map.find(tmp1)!=replacement_map.end()); // std::cerr << "storing " << Ex(tmp1) << " -> " << Ex(tmp2) << std::endl; replacement_map[tmp1]=tmp2; } DEBUGLN( std::cerr << "Replacement map is now:" << std::endl; for(auto& rule: replacement_map) std::cerr << "* " << rule.first << " -> " << rule.second << std::endl; ); } // Return a match of the appropriate type. If we are comparing indices and // they matched because they are from the same set but do not have the same // name, we still need to let the caller know about this. if(is_index) { int xc = subtree_compare(0, one, two, ignore_parent_rel?(-1):(-2)); if(xc==0) return report(match_t::subtree_match); if(xc>0) return report(match_t::match_index_less); return report(match_t::match_index_greater); } else return report(match_t::node_match); } else if(objectpattern) { // Even for object patterns, if we do not ignore the parent rel, we need to test them. if(!ignore_parent_rel) if( one->fl.parent_rel != two->fl.parent_rel ) return report( (one->fl.parent_rel < two->fl.parent_rel) ?match_t::no_match_indexpos_less:match_t::no_match_indexpos_greater ); subtree_replacement_map_t::iterator loc=subtree_replacement_map.find(one->name); if(loc!=subtree_replacement_map.end()) { return report(equal_subtree((*loc).second,two,use_props)); } else subtree_replacement_map[one->name]=two; return report(match_t::subtree_match); } else if(is_coordinate || is_number) { // Check if the coordinate can come from an index. const Indices *t2=0; if(use_props==useprops_t::always) { DEBUGLN( std::cerr << tab() << "is " << *two->name << " an index?" << std::endl; ); t2=properties.get(two, true); DEBUGLN( std::cerr << tab() << t2 << std::endl; ); } if(value_matches_index && t2) { // std::cerr << "coordinate " << *one->name << " versus index " << *two->name << std::endl; // If the 'two' index type is fixed or independent, ensure // that the parent relation matches! if(!ignore_parent_rel) if(t2->position_type==Indices::fixed || t2->position_type==Indices::independent) { if( one->fl.parent_rel != two->fl.parent_rel ) { DEBUGLN( std::cerr << tab() << "parent_rels not the same" << std::endl;); return report( (one->fl.parent_rel < two->fl.parent_rel) ?match_t::no_match_indexpos_less:match_t::no_match_indexpos_greater ); } } // Look through values attribute of Indices object to see if the 'two' index // can take the 'one' value. auto ivals = std::find_if(t2->values.begin(), t2->values.end(), [&](const Ex& a) { if(subtree_compare(&properties, a.begin(), one, 0)==0) return true; else return false; }); if(ivals!=t2->values.end()) { // Verify that the 'two' index has not already been matched to a value // different from 'one'. Ex t1(two), t2(two), o1(one), o2(one); t2.begin()->flip_parent_rel(); o2.begin()->flip_parent_rel(); auto prev1 = index_value_map.find(t1); auto prev2 = index_value_map.find(t2); if(prev1!=index_value_map.end() && ! (prev1->second==o1) ) { // std::cerr << "Previously 1 " << Ex(two) << " was " << Ex(prev1->second) << std::endl; return report(match_t::no_match_less); } if(prev2!=index_value_map.end() && ! (prev2->second==o2) ) { // std::cerr << "Previously 2 " << Ex(two) << " was " << Ex(prev2->second) << std::endl; return report(match_t::no_match_less); } index_value_map[two]=one; return report(match_t::node_match); } else { // The index 'one' is not known to be able to take value 'two'. So this is not // a match. Compare lexographically; this should be symmetric if one and two had // been exchanged. int dc = subtree_compare(&properties, one, two, 0); if(dc<0) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } } else { // What's left is the possibility that both indices are Coordinates, in which case they // need to match exactly. int cmp=subtree_compare(&properties, one, two, -2); if(cmp==0) return report(match_t::subtree_match); else if(cmp>0) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } } else { // object is not dummy nor objectpattern nor coordinate if(one->is_rational() && two->is_rational()) { if(one->multiplier!=two->multiplier) { if(*one->multiplier < *two->multiplier) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } else { // Equal numerical factors with different parent rel _never_ match, because // we cannot determine if index raising/lowering is allowed if we do not // know the bundle type. if(!ignore_parent_rel) if(one->fl.parent_rel != two->fl.parent_rel) return report( (one->fl.parent_rel < two->fl.parent_rel) ?match_t::no_match_indexpos_less:match_t::no_match_indexpos_greater ); } } if(name_match_with_autodeclare(one, two)) { if(nobrackets || (one->multiplier == two->multiplier) ) { if(ignore_parent_rel || one->fl.parent_rel==two->fl.parent_rel) return report( match_t::node_match ); report( (one->fl.parent_rel < two->fl.parent_rel) ?match_t::no_match_indexpos_less:match_t::no_match_indexpos_greater ); } if(*one->multiplier < *two->multiplier) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } else if( ((one->is_autodeclare_wildcard() && two->is_numbered_symbol()) || (two->is_autodeclare_wildcard() && one->is_numbered_symbol()) ) && one->name_only()==two->name_only() ) { return report(match_t::node_match); } else { if( *one->name < *two->name ) return report(match_t::no_match_less); else return report(match_t::no_match_greater); } } assert(1==0); // should never be reached return report(match_t::no_match_less); } bool Ex_comparator::name_match_with_autodeclare(Ex::sibling_iterator one, Ex::sibling_iterator two) const { if(one->name==two->name) return true; if((one->is_autodeclare_wildcard() && two->is_numbered_symbol()) || (two->is_autodeclare_wildcard() && one->is_numbered_symbol()) ) { if( one->name_only()==two->name_only() ) return true; } return false; } Ex_comparator::match_t Ex_comparator::match_subproduct(const Ex& tr, Ex::sibling_iterator lhs, Ex::sibling_iterator tofind, Ex::sibling_iterator st, Ex::iterator conditions) { replacement_map_t backup_replacements(replacement_map); subtree_replacement_map_t backup_subtree_replacements(subtree_replacement_map); // 'Start' iterates over all factors, trying to find 'tofind'. It may happen that the // first match is such that the entire subproduct matches, but it may be that we have // to iterate 'start' over more factors (typically when non-commutative objects are // concerned). Ex::sibling_iterator start=st.begin(); while(start!=st.end()) { // The factor 'tofind' can only be matched against a factor in the subproduct if we // have not already previously matched part of the lhs to this factor. We check that first. if(std::find(factor_locations.begin(), factor_locations.end(), start)==factor_locations.end()) { // Compare this factor with 'tofind'. auto match = equal_subtree(tofind, start); if(match==match_t::subtree_match || match==match_t::match_index_less || match==match_t::match_index_greater) { // The factor has been found. Verify that it can be moved // next to the previous factor, if applicable (nontrivial // if factors do not commute). int sign=1; if(factor_locations.size()>0) { DEBUGLN(std::cerr << "--- can move? ---" << std::endl; ); // Determining the sign is non-trivial to do step-by step. // Consider an expression // A B C D E // and a pattern // D A B // (D, A, B anti-commuting). A can be moved to the right of D // picking up two signs, and B can moved to the right of A with // no sign. Ex_comparator comparator(properties); sign=comparator.can_move_adjacent(st, factor_locations, start); DEBUGLN(std::cerr << "--- done can move ---" << sign << std::endl; ); } if(sign==0) { // object found, but we cannot move it in the right order replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } else { factor_locations.push_back(start); factor_moving_signs.push_back(sign); Ex::sibling_iterator nxt=tofind; ++nxt; if(nxt!=lhs.end()) { match_t res=match_subproduct(tr, lhs, nxt, st, conditions); if(res==match_t::subtree_match) return res; else { // txtout << tofind.node << "found factor useless " << start.node << std::endl; factor_locations.pop_back(); factor_moving_signs.pop_back(); replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } } else { // Found all factors in sub-product, now check the conditions. std::string error; if(conditions==tr.end()) return match_t::subtree_match; if(satisfies_conditions(conditions, error)) { return match_t::subtree_match; } else { factor_locations.pop_back(); factor_moving_signs.pop_back(); replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } } } } else { // txtout << tofind.node << "does not match" << std::endl; replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } } ++start; } return match_t::no_match_less; // FIXME not entirely true } Ex_comparator::match_t Ex_comparator::match_subsum(const Ex& tr, Ex::sibling_iterator lhs, Ex::sibling_iterator tofind, Ex::sibling_iterator st, Ex::iterator conditions) { replacement_map_t backup_replacements(replacement_map); subtree_replacement_map_t backup_subtree_replacements(subtree_replacement_map); // 'Start' iterates over all terms, trying to find 'tofind'. It may happen that the // first match is such that the entire sub-sum matches, but it may be that we have // to iterate 'start' over more terms (typically when relative factors of terms // do not match). Ex::sibling_iterator start=st.begin(); while(start!=st.end()) { // The term 'tofind' can only be matched against a term in the sub-sum if we // have not already previously matched part of the lhs to this term. We check that first. if(std::find(factor_locations.begin(), factor_locations.end(), start)==factor_locations.end()) { // Compare this factor with 'tofind'. auto match = equal_subtree(tofind, start); if(match==match_t::subtree_match || match==match_t::match_index_less || match==match_t::match_index_greater) { // The term has been found. If this is not the 1st term, verify // that the ratio of its multiplier to the multiplier of the search term // agrees with that ratio for the first term. if(tr.index(tofind)==0) { term_ratio = (*tofind->multiplier)/(*start->multiplier); } auto this_ratio = (*tofind->multiplier)/(*start->multiplier); if(this_ratio!=term_ratio) { replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } else { factor_locations.push_back(start); Ex::sibling_iterator nxt=tofind; ++nxt; if(nxt!=lhs.end()) { match_t res=match_subsum(tr, lhs, nxt, st, conditions); if(res==match_t::subtree_match) return res; else { factor_locations.pop_back(); replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } } else { // Found all factors in sub-product, now check the conditions. std::string error; if(conditions==tr.end()) return match_t::subtree_match; if(satisfies_conditions(conditions, error)) { return match_t::subtree_match; } else { factor_locations.pop_back(); replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } } } } else { // txtout << tofind.node << "does not match" << std::endl; replacement_map=backup_replacements; subtree_replacement_map=backup_subtree_replacements; } } ++start; } return match_t::no_match_less; // FIXME not entirely true } //Ex_comparator::match_t Ex_comparator::match_subsum(const Ex& tr, // Ex::sibling_iterator lhs, // Ex::sibling_iterator tofind, // Ex::sibling_iterator st, // Ex::iterator conditions) // { // // 'Start' iterates over all terms, trying to find 'tofind'. // // Ex::sibling_iterator start=st.begin(); // while(start!=st.end()) { // // // The term 'tofind' can only be matched against a term in the // // subsum if we have not already previously matched part of the // // lhs to this factor. We check that first. // // if(std::find(factor_locations.begin(), factor_locations.end(), start)==factor_locations.end()) { // // // Compare this term with 'tofind'. // // auto match = equal_subtree(tofind, start); // if(match==match_t::subtree_match || match==match_t::match_index_less || match==match_t::match_index_greater) { // factor_locations.push_back(start); // // Ex::sibling_iterator nxt=tofind; // ++nxt; // if(nxt!=lhs.end()) { // match_t res=match_subsum(tr, lhs, nxt, st, conditions); // return res; // } // else { // // Found all factors in sub-product. // auto sib=lhs.begin(); // for(size_t i=0; imultiplier << " (vs " << *sib->multiplier << "), "; // ++sib; // } // std::cerr << std::endl; // // // Now check the conditions. // std::string error; // if(conditions==tr.end()) return match_t::subtree_match; // if(satisfies_conditions(conditions, error)) { // return match_t::subtree_match; // } // } // } // } // ++start; // } // return match_t::no_match_less; // } int Ex_comparator::can_move_adjacent(Ex::iterator prod, Ex::sibling_iterator one, Ex::sibling_iterator two, bool fix_one) { assert(Ex::parent(one)==Ex::parent(two)); assert(Ex::parent(one)==prod); // Make sure that 'one' points to the object which occurs first in 'prod'. bool onefirst=false; Ex::sibling_iterator probe=one; while(probe!=prod.end()) { if(probe==two) { onefirst=true; break; } ++probe; } int sign=1; if(!onefirst) { std::swap(one,two); auto es=equal_subtree(one,two); sign*=can_swap(one,two,es); // txtout << "swapping one and two: " << sign << std::endl; } if(sign!=0) { // Loop over all pair flips which are necessary to move one to the left of two. // Keep one fixed if fix_one is true. if(fix_one) { probe=two; --probe; while(probe!=one) { auto es=equal_subtree(two,probe); // std::cerr << "swapping " << Ex(two) << " and " << Ex(probe) << std::endl; sign*=can_swap(two,probe,es); if(sign==0) break; --probe; } } else { probe=one; ++probe; while(probe!=two) { assert(probe!=prod.end()); auto es=equal_subtree(one,probe); // std::cerr << "swapping " << Ex(one) << " and " << Ex(probe) << std::endl; sign*=can_swap(one,probe,es); if(sign==0) break; ++probe; } } } return sign; } int Ex_comparator::can_move_to_front(Ex& tr, Ex::iterator prod, Ex::sibling_iterator one) { // Insert a dummy, determine whether we can move // next to the dummy, then erase the dummy again. auto dummy = tr.prepend_child(prod, str_node("dummy")); int sign=can_move_adjacent(prod, dummy, one, true); tr.erase(dummy); return sign; } int Ex_comparator::can_swap_components(Ex::iterator one, Ex::iterator two, match_t subtree_comparison) { int tmp; auto impi=properties.get_with_pattern(one, tmp, ""); if(impi.first) { if(impi.first->explicit_form.size()>0) { one=impi.first->explicit_form.begin(); } } impi=properties.get_with_pattern(two, tmp, ""); if(impi.first) { if(impi.first->explicit_form.size()>0) { two=impi.first->explicit_form.begin(); } } return can_swap(one, two, subtree_comparison, true); } // Determine the sign required to move the last factor in 'factors' to // the right of the first. If moving left, do not count signs from // moving past any of the other factors. If moving right, do count // those signs. In effect, the logic is that we count signs as if // all other factors have already been moved to the right of the first. int Ex_comparator::can_move_adjacent(Ex::iterator prod, const std::vector& factors, Ex::sibling_iterator i2) { if(factors.size()==0) return 1; Ex::sibling_iterator i1=factors[0]; // Determine whether to move right or left. bool move_right=true; Ex::sibling_iterator probe=i1; while(probe!=prod.end()) { if(probe==i2) { move_right=false; break; } ++probe; } // Move through all factors. probe=i2; int sign=1; do { if(move_right) ++probe; else --probe; if(probe==i1) break; if(std::find(factors.begin(), factors.end(), probe)!=factors.end()) continue; auto es=equal_subtree(i2, probe); sign*=can_swap(i2, probe, es); } while(sign!=0); if(move_right) { // When moving right, all factors which we have already ordered // sit to the right of the moving one, so we need to swap with them // all. auto f=factors.begin(); while(f!=factors.end()) { auto es=equal_subtree(i2, *f); sign*=can_swap(i2, *f, es); ++f; } } return sign; } // Should obj and obj+1 be swapped, according to the SortOrder // properties? // bool Ex_comparator::should_swap(Ex::iterator obj, match_t subtree_comparison) { Ex::sibling_iterator one=obj, two=obj; ++two; // If the two objects are the same up to index names, we do not care // whether it sits in a SortOrder list; just compare alpha. if(subtree_comparison==match_t::match_index_less) return false; if(subtree_comparison==match_t::match_index_greater) return true; // Find a SortOrder property which contains both one and two. int num1, num2; const SortOrder *so1=properties.get(one,num1); const SortOrder *so2=properties.get(two,num2); if(so1==0 || so2==0 || so1!=so2) { DEBUGLN( std::cerr << "No sort order between " << Ex(one) << " and " << Ex(two); ); report(subtree_comparison); // No explicit sort order known; use whatever we know from the comparison. switch(subtree_comparison) { case match_t::node_match: case match_t::subtree_match: case match_t::no_match_less: case match_t::no_match_indexpos_less: case match_t::match_index_less: return false; case match_t::no_match_greater: case match_t::no_match_indexpos_greater: case match_t::match_index_greater: return true; } return false; } assert(so1==so2); return num1>num2; } // Various tests about whether two non-elementary objects can be swapped. // int Ex_comparator::can_swap_prod_obj(Ex::iterator prod, Ex::iterator obj, bool ignore_implicit_indices) { // std::cout << "prod_obj " << *prod->name << " " << *obj->name << std::endl; // Warning: no check is made that prod is actually a product! int sign=1; Ex::sibling_iterator sib=prod.begin(); while(sib!=prod.end()) { const Indices *ind1=properties.get(sib, true); const Indices *ind2=properties.get(obj, true); if(! (ind1!=0 && ind2!=0) ) { // If both objects are actually real indices, // then we do not include their commutativity property // in the sign. This is because the routines that use // can_swap_prod_obj all test for such index-index // swaps separately. auto es=equal_subtree(sib, obj); // std::cout << " " << *sib->name << " " << *obj->name << " " << es << std::endl; sign*=can_swap(sib, obj, es, ignore_implicit_indices); if(sign==0) break; } ++sib; } return sign; } int Ex_comparator::can_swap_prod_prod(Ex::iterator prod1, Ex::iterator prod2, bool ignore_implicit_indices) { // std::cout << "prod_prod " << *prod1->name << " " << *prod2->name; // Warning: no check is made that prod1,2 are actually products! int sign=1; Ex::sibling_iterator sib=prod2.begin(); while(sib!=prod2.end()) { sign*=can_swap_prod_obj(prod1, sib, ignore_implicit_indices); if(sign==0) break; ++sib; } // std::cout << " -> " << sign << std::endl; return sign; } int Ex_comparator::can_swap_sum_obj(Ex::iterator sum, Ex::iterator obj, bool ignore_implicit_indices) { // Warning: no check is made that sum is actually a sum! int sofar=2; Ex::sibling_iterator sib=sum.begin(); while(sib!=sum.end()) { auto es=equal_subtree(sib, obj); int thissign=can_swap(sib, obj, es, ignore_implicit_indices); if(sofar==2) sofar=thissign; else if(thissign!=sofar) { sofar=0; break; } ++sib; } return sofar; } int Ex_comparator::can_swap_prod_sum(Ex::iterator prod, Ex::iterator sum, bool ignore_implicit_indices) { // Warning: no check is made that sum is actually a sum or prod is a prod! int sign=1; Ex::sibling_iterator sib=prod.begin(); while(sib!=prod.end()) { // const Indices *ind=kernel.properties->get(sib); // if(ind==0) { sign*=can_swap_sum_obj(sum, sib, ignore_implicit_indices); if(sign==0) break; // } ++sib; } return sign; } int Ex_comparator::can_swap_sum_sum(Ex::iterator sum1, Ex::iterator sum2, bool ignore_implicit_indices) { int sofar=2; Ex::sibling_iterator sib=sum1.begin(); while(sib!=sum1.end()) { int thissign=can_swap_sum_obj(sum2, sib, ignore_implicit_indices); if(sofar==2) sofar=thissign; else if(thissign!=sofar) { sofar=0; break; } ++sib; } return sofar; } int Ex_comparator::can_swap_ilist_ilist(Ex::iterator obj1, Ex::iterator obj2) { int sign=1; index_iterator it1=index_iterator::begin(properties, obj1); while(it1!=index_iterator::end(properties, obj1)) { index_iterator it2=index_iterator::begin(properties, obj2); while(it2!=index_iterator::end(properties, obj2)) { // Only deal with real indices here, i.e. those carrying an Indices property. const Indices *ind1=properties.get(it1, true); const Indices *ind2=properties.get(it2, true); if(ind1!=0 && ind2!=0) { const CommutingBehaviour *com1 =properties.get(it1, true); const CommutingBehaviour *com2 =properties.get(it2, true); if(com1!=0 && com1 == com2) sign *= com1->sign(); if(sign==0) break; } ++it2; } if(sign==0) break; ++it1; } return sign; } bool Ex_comparator::can_swap_different_indexsets(Ex::iterator obj1, Ex::iterator obj2) { std::set index_sets1; // std::cerr << "Are " << obj1 << " and " << obj2 << " swappable?" << std::endl; index_iterator it1=index_iterator::begin(properties, obj1); while(it1!=index_iterator::end(properties, obj1)) { auto ind = properties.get(it1, true); if(!ind) return false; index_sets1.insert(ind); ++it1; } index_iterator it2=index_iterator::begin(properties, obj2); while(it2!=index_iterator::end(properties, obj2)) { auto ind = properties.get(it2, true); if(!ind) return false; if(index_sets1.find(ind)!=index_sets1.end()) { // std::cerr << "NO" << std::endl; return false; } ++it2; } // std::cerr << "YES" << std::endl; return true; } int Ex_comparator::can_swap(Ex::iterator one, Ex::iterator two, match_t, bool ignore_implicit_indices) { // std::cerr << "can_swap " << *one->name << " " << *two->name << " " << ignore_implicit_indices << std::endl; // Explicitly declared commutation behaviour goes first. const CommutingBehaviour *com = properties.get(one, two, true); if(com) return com->sign(); // If both objects have implicit indices, we cannot swap the // objects because that would re-order the index line. The sole // exception is when these indices are explicitly stated to be in // different sets. const ImplicitIndex *ii1 = properties.get(one); const ImplicitIndex *ii2 = properties.get(two); if(!ignore_implicit_indices) { if(ii1) { if(ii1->explicit_form.size()==0) { if(ii2) return 0; // nothing known about explicit form } else one=ii1->explicit_form.begin(); } if(ii2) { if(ii2->explicit_form.size()==0) { if(ii1) return 0; // nothing known about explicit form } else two=ii2->explicit_form.begin(); } // Check that indices in one and two are in mutually exclusive sets. if(ii1 && ii2) if(!can_swap_different_indexsets(one, two)) return false; } // Differential forms in a product cannot be moved through each // other except when the degree of one of them is zero. In a wedge // product, we can move them and potentially pick up a sign. const DifferentialFormBase *df1 = properties.get(one); const DifferentialFormBase *df2 = properties.get(two); if(df1 && df2) { if(df1->degree(properties,one).begin()->is_zero() || df2->degree(properties,two).begin()->is_zero()) return 1; else { if(Ex::is_head(one) || *(Ex::parent(one)->name)=="\\wedge") { if(df1->degree(properties, one).is_rational()==false || df2->degree(properties, two).is_rational()==false) return 0; // Cannot yet order forms with non-numerical degrees. long d1 = to_long(df1->degree(properties, one).to_rational()); long d2 = to_long(df2->degree(properties, two).to_rational()); if( (d1*d2) % 2 == 1) return -1; return 1; } } } // Do we need to use Self* properties? const SelfCommutingBehaviour *sc1 =properties.get(one, true); const SelfCommutingBehaviour *sc2 =properties.get(two, true); if( (sc1!=0 && sc1==sc2) ) return sc1->sign(); // One or both of the objects are not in an explicit list. So now comes the generic // part. The first step is to look at all explicit indices of the two objects and determine // their commutativity. // Note: this does not yet look at arguments (non-index children). int tmpsign=can_swap_ilist_ilist(one, two); if(tmpsign==0) return 0; // The second step is to check for product-like and sum-like behaviour. The following // take into account all commutativity properties of explict with implicit indices, // as well as hard-specified commutativity of factors. const CommutingAsProduct *comap1 = properties.get(one); const CommutingAsProduct *comap2 = properties.get(two); const CommutingAsSum *comas1 = properties.get(one); const CommutingAsSum *comas2 = properties.get(two); if(comap1 && comap2) return tmpsign*can_swap_prod_prod(one,two,ignore_implicit_indices); if(comap1 && comas2) return tmpsign*can_swap_prod_sum(one,two,ignore_implicit_indices); if(comap2 && comas1) return tmpsign*can_swap_prod_sum(two,one,ignore_implicit_indices); if(comas1 && comas2) return tmpsign*can_swap_sum_sum(one,two,ignore_implicit_indices); if(comap1) return tmpsign*can_swap_prod_obj(one,two,ignore_implicit_indices); if(comap2) return tmpsign*can_swap_prod_obj(two,one,ignore_implicit_indices); if(comas1) return tmpsign*can_swap_sum_obj(one,two,ignore_implicit_indices); if(comas2) return tmpsign*can_swap_sum_obj(two,one,ignore_implicit_indices); return 1; // default: commuting. } bool Ex_comparator::satisfies_conditions(Ex::iterator conditions, std::string& error) { // std::cerr << "satisfies_conditions" << std::endl; for(unsigned int i=0; iname=="\\unequals") { Ex::sibling_iterator lhs=cond.begin(); Ex::sibling_iterator rhs=lhs; ++rhs; // Lookup the replacement rules for the two given objects, and return true if // those rules give a different result. But first check that there are rules // to start with. // std::cerr << *lhs->name << " !=? " << *rhs->name << std::endl; if(replacement_map.find(Ex(lhs))==replacement_map.end() || replacement_map.find(Ex(rhs))==replacement_map.end()) return true; // std::cerr << *lhs->name << " !=?? " << *rhs->name << std::endl; if(tree_exact_equal(&properties, replacement_map[Ex(lhs)], replacement_map[Ex(rhs)])) { return false; } } else if(*cond->name=="\\greater" || *cond->name=="\\less") { Ex::sibling_iterator lhs=cond.begin(); Ex::sibling_iterator rhs=lhs; ++rhs; multiplier_t mlhs; if(lhs->is_rational()==false) { auto fnd=replacement_map.find(Ex(lhs)); // std::cerr << "finding " << lhs << std::endl; if(fnd!=replacement_map.end()) { auto tn=fnd->second.begin(); // std::cerr << tn << std::endl; if(tn->is_rational()) mlhs=*tn->multiplier; else { error="Replacement not numerical."; return false; } } else { error="Can only compare objects which evaluate to numbers."; return false; } } else mlhs=*lhs->multiplier; // FIXME: abstract into Storage multiplier_t mrhs; if(rhs->is_rational()==false) { auto fnd=replacement_map.find(Ex(rhs)); if(fnd!=replacement_map.end()) { auto tn=fnd->second.begin(); if(tn->is_rational()) mrhs=*tn->multiplier; else { error="Replacement not numerical."; return false; } } else { error="Can only compare objects which evaluate to numbers."; return false; } } else mrhs=*rhs->multiplier; if(*cond->name=="\\greater" && mlhs <= mrhs) return false; if(*cond->name=="\\less" && mlhs >= mrhs) return false; } else if(*cond->name=="\\indexpairs") { int countpairs=0; replacement_map_t::const_iterator it=replacement_map.begin(),it2; while(it!=replacement_map.end()) { it2=it; ++it2; while(it2!=replacement_map.end()) { if(tree_exact_equal(&properties, it->second, it2->second)) { ++countpairs; break; } ++it2; } ++it; } // txtout << countpairs << " pairs" << std::endl; if(countpairs!=*(cond.begin()->multiplier)) return false; } else if(*cond->name=="\\regex") { // txtout << "regex matching..." << std::endl; Ex::sibling_iterator lhs=cond.begin(); Ex::sibling_iterator rhs=lhs; ++rhs; // If we have a match, all indices have replacement rules. std::string pat=(*rhs->name).substr(1,(*rhs->name).size()-2); // txtout << "matching " << *comp.replacement_map[lhs->name] // << " with pattern " << pat << std::endl; std::regex reg(pat); if (!std::regex_match(*(replacement_map[Ex(lhs)].begin()->name), reg)) return false; } // V2: FIXME: re-enable searching for properties // else if(*cond->name=="\\hasprop") { // Ex::sibling_iterator lhs=cond.begin(); // Ex::sibling_iterator rhs=lhs; // ++rhs; // Properties::registered_property_map_t::iterator pit=properties->store.find(*rhs->name); // if(pit==properties->store.end()) { // std::ostringstream str; // str << "Property \"" << *rhs->name << "\" not registered." << std::endl; // error=str.str(); // return false; // } // const property_base *aprop=pit->second(); // // subtree_replacement_map_t::iterator subfind=subtree_replacement_map.find(lhs->name); // replacement_map_t::iterator patfind=replacement_map.find(Ex(lhs)); // // if(subfind==subtree_replacement_map.end() && patfind==replacement_map.end()) { // std::ostringstream str; // str << "Pattern " << *lhs->name << " in \\hasprop did not occur in match." << std::endl; // delete aprop; // error=str.str(); // return false; // } // // bool ret=false; // if(subfind==subtree_replacement_map.end()) // ret=properties->has(aprop, (*patfind).second.begin()); // else // ret=properties->has(aprop, (*subfind).second); // delete aprop; // return ret; // } else { std::ostringstream str; str << "substitute: condition involving " << *cond->name << " not understood." << std::endl; error=str.str(); return false; } } return true; } Ex_is_equivalent::Ex_is_equivalent(const Properties& k) : properties(k) { } bool Ex_is_equivalent::operator()(const Ex& one, const Ex& two) { int ret=subtree_compare(&properties, one.begin(), two.begin()); if(ret==0) return true; else return false; } Ex_is_less::Ex_is_less(const Properties& k, int mp) : properties(k), mod_prel(mp) { } bool Ex_is_less::operator()(const Ex& one, const Ex& two) { int ret=subtree_compare(&properties, one.begin(), two.begin(), mod_prel); if(ret < 0) return true; else return false; } } bool operator<(const cadabra::Ex::iterator& i1, const cadabra::Ex::iterator& i2) { return i1.node < i2.node; } bool operator<(const cadabra::Ex& e1, const cadabra::Ex& e2) { return e1.begin().node < e2.begin().node; } std::ostream& operator<<(std::ostream& s, cadabra::Ex_comparator::useprops_t up) { switch(up) { case cadabra::Ex_comparator::useprops_t::always: s << "always"; break; case cadabra::Ex_comparator::useprops_t::not_at_top: s << "not_at_top"; break; case cadabra::Ex_comparator::useprops_t::never: s << "never"; break; } return s; }