/* -*- Mode: C; c-basic-offset:4 ; indent-tabs-mode:nil -*- */ /* * Copyright (c) 2004-2005 The Trustees of Indiana University and Indiana * University Research and Technology * Corporation. All rights reserved. * Copyright (c) 2004-2013 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2004-2005 High Performance Computing Center Stuttgart, * University of Stuttgart. All rights reserved. * Copyright (c) 2004-2005 The Regents of the University of California. * All rights reserved. * Copyright (c) 2006-2010 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2015 Los Alamos National Security, LLC. All rights * reserved. * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ #include "opal_config.h" #include #ifdef HAVE_SYS_TIME_H #include #else #include #endif #include #include "support.h" #include "opal/class/opal_rb_tree.h" #include "opal/mca/mpool/base/base.h" #define NUM_KEYS 10000 #define SEED 1 int keys[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; int values[] = { 10, 11, 12, 13, 14, 15, 16, 17 }; int comp_fn(void * ele1, void * ele2); void test1(void); int comp_key(void* key1, void* key2); void test_keys(void); int comp_fn(void * ele1, void * ele2) { if(*((int *) ele1) > *((int *) ele2)) { return(1); } if(*((int *) ele1) < *((int *) ele2)) { return(-1); } return(0); } struct my_key_t{ void *base; void *bound; }; typedef struct my_key_t my_key_t; struct my_val_t{ my_key_t* key; int val; }; typedef struct my_val_t my_val_t; int comp_key(void* key1, void* key2) { if( ((my_key_t*) key1)->base < ((my_key_t*) key2)->base) { return -1; } else if ( ((my_key_t*) key1)->base > ((my_key_t*) key2)->bound) { return 1; } else { return 0; } } void test_keys(void) { opal_rb_tree_t tree; int rc, i; my_key_t keys[NUM_KEYS]; my_val_t vals[NUM_KEYS]; char buf[200]; my_key_t *cur_key; my_val_t *cur_val; long tmp; OBJ_CONSTRUCT(&tree, opal_rb_tree_t); rc = opal_rb_tree_init(&tree, comp_key); srand(SEED); for(i = 0; i < NUM_KEYS; i++) { cur_key = &(keys[i]); cur_val = &(vals[i]); cur_val->key = cur_key; cur_val->val = i; tmp = (long) rand(); cur_key->base = (void*) tmp; tmp += (long) rand(); cur_key->bound = (void*) tmp; rc = opal_rb_tree_insert(&tree, cur_key, cur_val); if(OPAL_SUCCESS != rc) { test_failure("error inserting element in the tree"); } } for(i = 0; i < NUM_KEYS; i+=2) { cur_key = &(keys[i]); rc = opal_rb_tree_delete(&tree, cur_key); if(OPAL_SUCCESS != rc) { test_failure("error deleting element in the tree"); } } for(i = 1; i < NUM_KEYS; i+=2) { cur_key = &(keys[i]); cur_val = (my_val_t*) opal_rb_tree_find(&tree, cur_key); if(cur_val == NULL) { test_failure("lookup returned NULL item"); } else if(cur_val->val != i && (cur_val->key->base > cur_key->base || cur_val->key->bound < cur_key->base)) { sprintf(buf, "lookup returned invalid item, returned %d, extected %d", cur_val->val, i); test_failure(buf); } } } void test1(void) { opal_rb_tree_t tree; int rc; void * result; OBJ_CONSTRUCT(&tree, opal_rb_tree_t); rc = opal_rb_tree_init(&tree, comp_fn); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly initialize the tree"); } rc = opal_rb_tree_insert(&tree, &keys[0], &values[0]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[0]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[0], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_insert(&tree, &keys[1], &values[1]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[1]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[1], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_insert(&tree, &keys[2], &values[2]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[2]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[2], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_insert(&tree, &keys[3], &values[3]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[3]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[3], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_insert(&tree, &keys[4], &values[4]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[4]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[4], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_insert(&tree, &keys[5], &values[5]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[5]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[5], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_insert(&tree, &keys[6], &values[6]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[6]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[6], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_insert(&tree, &keys[7], &values[7]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly insert a new node"); } result = opal_rb_tree_find(&tree, &keys[7]); if(NULL == result) { test_failure("lookup returned null!"); } if(!test_verify_int(values[7], *((int *) result))) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_size(&tree); if(!test_verify_int(8, rc)) { test_failure("failed to properly insert a new node"); } rc = opal_rb_tree_delete(&tree, &keys[0]); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly delete a node"); } result = opal_rb_tree_find(&tree, &keys[0]); if(NULL != result) { test_failure("lookup returned a value instead of null!"); } else { test_success(); } OBJ_DESTRUCT(&tree); } /* the following test is based on memory lookups in the mpool */ int mem_node_compare(void * key1, void * key2); void test2(void); /* the maximum number of memory pools a piece of memory can be registered with */ #define MAX_REGISTRATIONS 10 /* the number of memory segments to allocate */ #define NUM_ALLOCATIONS 500 struct opal_test_rb_key_t { void * bottom; /* the bottom of the memory range */ void * top; /* the top of the memory range */ }; typedef struct opal_test_rb_key_t opal_test_rb_key_t; struct opal_test_rb_value_t { opal_free_list_item_t super; /* the parent class */ opal_test_rb_key_t key; /* the key which holds the memory pointers */ mca_mpool_base_module_t* registered_mpools[MAX_REGISTRATIONS]; /* the mpools the memory is registered with */ }; typedef struct opal_test_rb_value_t opal_test_rb_value_t; OBJ_CLASS_INSTANCE(opal_test_rb_value_t, opal_free_list_item_t, NULL, NULL); int mem_node_compare(void * key1, void * key2) { if(((opal_test_rb_key_t *) key1)->bottom < ((opal_test_rb_key_t *) key2)->bottom) { return -1; } else if(((opal_test_rb_key_t *) key1)->bottom > ((opal_test_rb_key_t *) key2)->top) { return 1; } return 0; } void test2(void) { opal_free_list_t key_list; opal_free_list_item_t * new_value; opal_rb_tree_t tree; int rc, i, size; void * result, * lookup; void * mem[NUM_ALLOCATIONS]; opal_free_list_item_t * key_array[NUM_ALLOCATIONS]; struct timeval start, end; OBJ_CONSTRUCT(&key_list, opal_free_list_t); opal_free_list_init (&key_list, sizeof(opal_test_rb_value_t), opal_cache_line_size, OBJ_CLASS(opal_test_rb_value_t), 0,opal_cache_line_size, 0, -1 , 128, NULL, 0, NULL, NULL, NULL); OBJ_CONSTRUCT(&tree, opal_rb_tree_t); rc = opal_rb_tree_init(&tree, mem_node_compare); if(!test_verify_int(OPAL_SUCCESS, rc)) { test_failure("failed to properly initialize the tree"); } size = 1; for(i = 0; i < NUM_ALLOCATIONS; i++) { mem[i] = malloc(size); if(NULL == mem[i]) { test_failure("system out of memory"); return; } new_value = opal_free_list_get (&key_list); if(NULL == new_value) { test_failure("failed to get memory from free list"); } key_array[i] = new_value; ((opal_test_rb_value_t *) new_value)->key.bottom = mem[i]; ((opal_test_rb_value_t *) new_value)->key.top = (void *) ((size_t) mem[i] + size - 1); ((opal_test_rb_value_t *) new_value)->registered_mpools[0] = (void *)(intptr_t) i; rc = opal_rb_tree_insert(&tree, &((opal_test_rb_value_t *)new_value)->key, new_value); if(OPAL_SUCCESS != rc) { test_failure("failed to properly insert a new node"); } size += 1; } gettimeofday(&start, NULL); for(i = 0; i < NUM_ALLOCATIONS; i++) { lookup = (void *) ((size_t) mem[i] + i); result = opal_rb_tree_find(&tree, &lookup); if(NULL == result) { test_failure("lookup returned null!"); } else if(i != ((int)(intptr_t) ((opal_test_rb_value_t *) result)->registered_mpools[0])) { test_failure("lookup returned wrong node!"); } result = opal_rb_tree_find(&tree, &lookup); if(NULL == result) { test_failure("lookup returned null!"); } else if(i != ((int)(intptr_t) ((opal_test_rb_value_t *) result)->registered_mpools[0])) { test_failure("lookup returned wrong node!"); } } gettimeofday(&end, NULL); #if 0 i = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_usec - start.tv_usec); printf("In a %d node tree, %d lookups took %f microseconds each\n", NUM_ALLOCATIONS, NUM_ALLOCATIONS * 2, (float) i / (float) (NUM_ALLOCATIONS * 2)); #endif for(i = 0; i < NUM_ALLOCATIONS; i++) { if(NULL != mem[i]) { free(mem[i]); } opal_free_list_return (&(key_list), key_array[i]); } OBJ_DESTRUCT(&tree); OBJ_DESTRUCT(&key_list); } int main(int argc, char **argv) { test_init("opal_rb_tree_t"); test1(); test2(); /* test_keys(); */ return test_finalize(); }