/* * Copyright (c) 2018-2023 The University of Tennessee and The University * of Tennessee Research Foundation. All rights * reserved. * Copyright (c) 2020 Bull S.A.S. All rights reserved. * Copyright (c) 2022 IBM Corporation. All rights reserved * $COPYRIGHT$ * * Additional copyrights may follow * * $HEADER$ */ /* * @file * This files contains all the hierarchical implementations of reduce */ #include "coll_han.h" #include "ompi/mca/coll/base/coll_base_functions.h" #include "ompi/mca/pml/pml.h" #include "coll_han_trigger.h" static int mca_coll_han_reduce_t0_task(void *task_args); static int mca_coll_han_reduce_t1_task(void *task_args); static inline void mca_coll_han_set_reduce_args(mca_coll_han_reduce_args_t * args, mca_coll_task_t * cur_task, void *sbuf, void *rbuf, int seg_count, struct ompi_datatype_t *dtype, struct ompi_op_t *op, int root_up_rank, int root_low_rank, struct ompi_communicator_t *up_comm, struct ompi_communicator_t *low_comm, int num_segments, int cur_seg, int w_rank, int last_seg_count, bool noop, bool is_tmp_rbuf) { args->cur_task = cur_task; args->sbuf = sbuf; args->rbuf = rbuf; args->seg_count = seg_count; args->dtype = dtype; args->op = op; args->root_low_rank = root_low_rank; args->root_up_rank = root_up_rank; args->up_comm = up_comm; args->low_comm = low_comm; args->num_segments = num_segments; args->cur_seg = cur_seg; args->w_rank = w_rank; args->last_seg_count = last_seg_count; args->noop = noop; args->is_tmp_rbuf = is_tmp_rbuf; } /* * Each segment of the message needs to go though 2 steps to perform MPI_Reduce: * lb: low level (shared-memory or intra-node) reduce. * ub: upper level (inter-node) reduce * Hence, in each iteration, there is a combination of collective operations which is called a task. * | seg 0 | seg 1 | seg 2 | seg 3 | * iter 0 | lr | | | | task: t0, contains lr * iter 1 | ur | lr | | | task: t1, contains ur and lr * iter 2 | | ur | lr | | task: t1, contains ur and lr * iter 3 | | | ur | lr | task: t1, contains ur and lr * iter 4 | | | | ur | task: t1, contains ur */ int mca_coll_han_reduce_intra(const void *sbuf, void *rbuf, int count, struct ompi_datatype_t *dtype, ompi_op_t* op, int root, struct ompi_communicator_t *comm, mca_coll_base_module_t * module) { mca_coll_han_module_t *han_module = (mca_coll_han_module_t *) module; ptrdiff_t extent, lb; int seg_count = count, w_rank; size_t dtype_size; /* No support for non-commutative operations */ if(!ompi_op_is_commute(op)) { OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "han cannot handle reduce with this operation. Fall back on another component\n")); goto prev_reduce_intra; } /* Create the subcommunicators */ if( OMPI_SUCCESS != mca_coll_han_comm_create(comm, han_module) ) { OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "han cannot handle reduce with this communicator. Drop HAN support in this communicator and fall back on another component\n")); /* HAN cannot work with this communicator so fallback on all modules */ HAN_LOAD_FALLBACK_COLLECTIVES(han_module, comm); return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root, comm, han_module->previous_reduce_module); } /* Topo must be initialized to know rank distribution which then is used to * determine if han can be used */ mca_coll_han_topo_init(comm, han_module, 2); if (han_module->are_ppn_imbalanced) { OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "han cannot handle reduce with this communicator (imbalanced). Drop HAN support in this communicator and fall back on another component\n")); /* Put back the fallback collective support and call it once. All * future calls will then be automatically redirected. */ HAN_LOAD_FALLBACK_COLLECTIVE(han_module, comm, reduce); return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root, comm, han_module->previous_reduce_module); } ompi_datatype_get_extent(dtype, &lb, &extent); w_rank = ompi_comm_rank(comm); ompi_datatype_type_size(dtype, &dtype_size); ompi_communicator_t *low_comm; ompi_communicator_t *up_comm; /* use MCA parameters for now */ low_comm = han_module->cached_low_comms[mca_coll_han_component.han_reduce_low_module]; up_comm = han_module->cached_up_comms[mca_coll_han_component.han_reduce_up_module]; COLL_BASE_COMPUTED_SEGCOUNT(mca_coll_han_component.han_reduce_segsize, dtype_size, seg_count); int num_segments = (count + seg_count - 1) / seg_count; OPAL_OUTPUT_VERBOSE((20, mca_coll_han_component.han_output, "In HAN seg_count %d count %d num_seg %d\n", seg_count, count, num_segments)); int *vranks = han_module->cached_vranks; int low_rank = ompi_comm_rank(low_comm); int low_size = ompi_comm_size(low_comm); int up_rank = ompi_comm_rank(up_comm); int root_low_rank; int root_up_rank; mca_coll_han_get_ranks(vranks, root, low_size, &root_low_rank, &root_up_rank); OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: root_low_rank %d root_up_rank %d\n", w_rank, root_low_rank, root_up_rank)); void *tmp_rbuf = rbuf; void *tmp_rbuf_to_free = NULL; if (low_rank == root_low_rank && root_up_rank != up_rank) { /* allocate 2 segments on node leaders that are not the global root */ tmp_rbuf = malloc(2*extent*seg_count); tmp_rbuf_to_free = tmp_rbuf; } /* Create t0 tasks for the first segment */ mca_coll_task_t *t0 = OBJ_NEW(mca_coll_task_t); /* Setup up t0 task arguments */ mca_coll_han_reduce_args_t *t = malloc(sizeof(mca_coll_han_reduce_args_t)); mca_coll_han_set_reduce_args(t, t0, (char *) sbuf, (char *) tmp_rbuf, seg_count, dtype, op, root_up_rank, root_low_rank, up_comm, low_comm, num_segments, 0, w_rank, count - (num_segments - 1) * seg_count, low_rank != root_low_rank, (NULL != tmp_rbuf_to_free)); /* Init the first task */ init_task(t0, mca_coll_han_reduce_t0_task, (void *) t); issue_task(t0); /* Create t1 task */ mca_coll_task_t *t1 = OBJ_NEW(mca_coll_task_t); /* Setup up t1 task arguments */ t->cur_task = t1; /* Init the t1 task */ init_task(t1, mca_coll_han_reduce_t1_task, (void *) t); issue_task(t1); while (t->cur_seg <= t->num_segments - 2) { /* Create t_next_seg task */ mca_coll_task_t *t_next_seg = OBJ_NEW(mca_coll_task_t); /* Setup up t_next_seg task arguments */ t->cur_task = t_next_seg; if (t->sbuf != MPI_IN_PLACE) { t->sbuf = (char *) t->sbuf + extent * t->seg_count; } if (up_rank == root_up_rank) { t->rbuf = (char *) t->rbuf + extent * t->seg_count; } t->cur_seg = t->cur_seg + 1; /* Init the t_next_seg task */ init_task(t_next_seg, mca_coll_han_reduce_t1_task, (void *) t); issue_task(t_next_seg); } free(t); free(tmp_rbuf_to_free); return OMPI_SUCCESS; prev_reduce_intra: return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root, comm, han_module->previous_reduce_module); } /* t0 task: issue and wait for the low level reduce of segment 0 */ int mca_coll_han_reduce_t0_task(void *task_args) { mca_coll_han_reduce_args_t *t = (mca_coll_han_reduce_args_t *) task_args; OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: in t0 %d\n", t->w_rank, t->cur_seg)); OBJ_RELEASE(t->cur_task); ptrdiff_t extent, lb; ompi_datatype_get_extent(t->dtype, &lb, &extent); t->low_comm->c_coll->coll_reduce((char *) t->sbuf, (char *) t->rbuf, t->seg_count, t->dtype, t->op, t->root_low_rank, t->low_comm, t->low_comm->c_coll->coll_reduce_module); return OMPI_SUCCESS; } /* t1 task */ int mca_coll_han_reduce_t1_task(void *task_args) { mca_coll_han_reduce_args_t *t = (mca_coll_han_reduce_args_t *) task_args; OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "[%d]: in t1 %d\n", t->w_rank, t->cur_seg)); OBJ_RELEASE(t->cur_task); ptrdiff_t extent, lb; int cur_seg = t->cur_seg; ompi_datatype_get_extent(t->dtype, &lb, &extent); ompi_request_t *ireduce_req = NULL; if (!t->noop) { int tmp_count = t->seg_count; if (cur_seg == t->num_segments - 1 && t->last_seg_count != t->seg_count) { tmp_count = t->last_seg_count; } int up_rank = ompi_comm_rank(t->up_comm); /* ur of cur_seg */ if (up_rank == t->root_up_rank) { t->up_comm->c_coll->coll_ireduce(MPI_IN_PLACE, (char *) t->rbuf, tmp_count, t->dtype, t->op, t->root_up_rank, t->up_comm, &ireduce_req, t->up_comm->c_coll->coll_ireduce_module); } else { /* this is a node leader that is not root so alternate between the two allocated segments */ char *tmp_sbuf = (char*)t->rbuf + (cur_seg % 2)*(extent * t->seg_count); t->up_comm->c_coll->coll_ireduce(tmp_sbuf, NULL, tmp_count, t->dtype, t->op, t->root_up_rank, t->up_comm, &ireduce_req, t->up_comm->c_coll->coll_ireduce_module); } } /* lr of cur_seg+1 */ int next_seg = cur_seg + 1; if (next_seg <= t->num_segments - 1) { int tmp_count = t->seg_count; char *tmp_rbuf = NULL; char *tmp_sbuf = NULL; if (next_seg == t->num_segments - 1 && t->last_seg_count != t->seg_count) { tmp_count = t->last_seg_count; } if (t->is_tmp_rbuf) { tmp_rbuf = (char*)t->rbuf + (next_seg % 2)*(extent * t->seg_count); } else if (NULL != t->rbuf) { tmp_rbuf = (char*)t->rbuf + extent * t->seg_count; } tmp_sbuf = (t->sbuf == MPI_IN_PLACE) ? MPI_IN_PLACE : (char *)t->sbuf + extent * t->seg_count; t->low_comm->c_coll->coll_reduce((char *) tmp_sbuf, (char *) tmp_rbuf, tmp_count, t->dtype, t->op, t->root_low_rank, t->low_comm, t->low_comm->c_coll->coll_reduce_module); } if (!t->noop && ireduce_req) { ompi_request_wait(&ireduce_req, MPI_STATUS_IGNORE); } return OMPI_SUCCESS; } /* In case of non regular situation (imbalanced number of processes per nodes), * a fallback is made on the next component that provides a reduce in priority order */ int mca_coll_han_reduce_intra_simple(const void *sbuf, void* rbuf, int count, struct ompi_datatype_t *dtype, ompi_op_t *op, int root, struct ompi_communicator_t *comm, mca_coll_base_module_t *module) { int w_rank; /* information about the global communicator */ int root_low_rank, root_up_rank; /* root ranks for both sub-communicators */ int ret; int *vranks, low_rank, low_size; ptrdiff_t rsize, rgap = 0; void * tmp_buf; mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module; /* No support for non-commutative operations */ if(!ompi_op_is_commute(op)){ OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "han cannot handle reduce with this operation. Fall back on another component\n")); goto prev_reduce_intra; } /* Create the subcommunicators */ if( OMPI_SUCCESS != mca_coll_han_comm_create(comm, han_module) ) { OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "han cannot handle reduce with this communicator. Drop HAN support in this communicator and fall back on another component\n")); /* HAN cannot work with this communicator so fallback on all collectives */ HAN_LOAD_FALLBACK_COLLECTIVES(han_module, comm); return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root, comm, han_module->previous_reduce_module); } /* Topo must be initialized to know rank distribution which then is used to * determine if han can be used */ mca_coll_han_topo_init(comm, han_module, 2); if (han_module->are_ppn_imbalanced) { OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "han cannot handle reduce with this communicator (imbalanced). Drop HAN support in this communicator and fall back on another component\n")); /* Put back the fallback collective support and call it once. All * future calls will then be automatically redirected. */ HAN_LOAD_FALLBACK_COLLECTIVE(han_module, comm, reduce); return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root, comm, han_module->previous_reduce_module); } ompi_communicator_t *low_comm = han_module->cached_low_comms[mca_coll_han_component.han_reduce_low_module]; ompi_communicator_t *up_comm = han_module->cached_up_comms[mca_coll_han_component.han_reduce_up_module]; /* Get the 'virtual ranks' mapping corresponding to the communicators */ vranks = han_module->cached_vranks; w_rank = ompi_comm_rank(comm); low_rank = ompi_comm_rank(low_comm); low_size = ompi_comm_size(low_comm); /* Get root ranks for low and up comms */ mca_coll_han_get_ranks(vranks, root, low_size, &root_low_rank, &root_up_rank); if (root_low_rank == low_rank && w_rank != root) { rsize = opal_datatype_span(&dtype->super, (int64_t)count, &rgap); tmp_buf = malloc(rsize); if (NULL == tmp_buf) { return OMPI_ERROR; } } else { /* global root rbuf is valid, local non-root do not need buffers */ tmp_buf = rbuf; } /* No need to handle MPI_IN_PLACE: only the global root may ask for it and * it is ok to use it for intermediary reduces since it is also a local root*/ /* Low_comm reduce */ ret = low_comm->c_coll->coll_reduce((char *)sbuf, (char *)tmp_buf, count, dtype, op, root_low_rank, low_comm, low_comm->c_coll->coll_reduce_module); if (OPAL_UNLIKELY(OMPI_SUCCESS != ret)){ if (root_low_rank == low_rank && w_rank != root){ free(tmp_buf); } OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "HAN/REDUCE: low comm reduce failed. " "Falling back to another component\n")); goto prev_reduce_intra; } /* Up_comm reduce */ if (root_low_rank == low_rank ){ if(w_rank != root){ ret = up_comm->c_coll->coll_reduce((char *)tmp_buf, NULL, count, dtype, op, root_up_rank, up_comm, up_comm->c_coll->coll_reduce_module); free(tmp_buf); } else { /* Take advantage of any optimisation made for IN_PLACE * communications */ ret = up_comm->c_coll->coll_reduce(MPI_IN_PLACE, (char *)tmp_buf, count, dtype, op, root_up_rank, up_comm, up_comm->c_coll->coll_reduce_module); } if (OPAL_UNLIKELY(OMPI_SUCCESS != ret)){ OPAL_OUTPUT_VERBOSE((30, mca_coll_han_component.han_output, "HAN/REDUCE: low comm reduce failed.\n")); return ret; } } return OMPI_SUCCESS; prev_reduce_intra: return han_module->previous_reduce(sbuf, rbuf, count, dtype, op, root, comm, han_module->previous_reduce_module); } /* Find a fallback on reproducible algorithm * use tuned or basic or if impossible whatever available */ int mca_coll_han_reduce_reproducible_decision(struct ompi_communicator_t *comm, mca_coll_base_module_t *module) { int w_rank = ompi_comm_rank(comm); mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module; /* populate previous modules_storage*/ mca_coll_han_get_all_coll_modules(comm, han_module); /* try availability of reproducible modules */ int fallbacks[] = {TUNED, BASIC}; int fallbacks_len = sizeof(fallbacks) / sizeof(*fallbacks); int i; for (i=0; imodules_storage.modules[fallback].module_handler; if (fallback_module != NULL && fallback_module->coll_reduce != NULL) { if (0 == w_rank) { opal_output_verbose(30, mca_coll_han_component.han_output, "coll:han:reduce_reproducible: " "fallback on %s\n", ompi_coll_han_available_components[fallback].component_name); } han_module->reproducible_reduce_module = fallback_module; han_module->reproducible_reduce = fallback_module->coll_reduce; return OMPI_SUCCESS; } } /* fallback of the fallback */ if (0 == w_rank) { opal_output_verbose(5, mca_coll_han_component.han_output, "coll:han:reduce_reproducible_decision: " "no reproducible fallback\n"); } han_module->reproducible_reduce_module = han_module->previous_reduce_module; han_module->reproducible_reduce = han_module->previous_reduce; return OMPI_SUCCESS; } /* Fallback on reproducible algorithm */ int mca_coll_han_reduce_reproducible(const void *sbuf, void *rbuf, int count, struct ompi_datatype_t *dtype, struct ompi_op_t *op, int root, struct ompi_communicator_t *comm, mca_coll_base_module_t *module) { mca_coll_han_module_t *han_module = (mca_coll_han_module_t *)module; return han_module->reproducible_reduce(sbuf, rbuf, count, dtype, op, root, comm, han_module ->reproducible_reduce_module); }