.\" Man page generated from reStructuredText. . .TH "MPI_SCAN" "3" "Jul 22, 2024" "" "Open MPI" . .nr rst2man-indent-level 0 . .de1 rstReportMargin \\$1 \\n[an-margin] level \\n[rst2man-indent-level] level margin: \\n[rst2man-indent\\n[rst2man-indent-level]] - \\n[rst2man-indent0] \\n[rst2man-indent1] \\n[rst2man-indent2] .. .de1 INDENT .\" .rstReportMargin pre: . RS \\$1 . nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin] . nr rst2man-indent-level +1 .\" .rstReportMargin post: .. .de UNINDENT . RE .\" indent \\n[an-margin] .\" old: \\n[rst2man-indent\\n[rst2man-indent-level]] .nr rst2man-indent-level -1 .\" new: \\n[rst2man-indent\\n[rst2man-indent-level]] .in \\n[rst2man-indent\\n[rst2man-indent-level]]u .. .sp \fI\%MPI_Scan\fP, \fI\%MPI_Iscan\fP, \fI\%MPI_Scan_init\fP \- Computes an inclusive scan (partial reduction) .SH SYNTAX .SS C Syntax .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C #include int MPI_Scan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) int MPI_Iscan(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Request *request) int MPI_Scan_init(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Info info, MPI_Request *request) .ft P .fi .UNINDENT .UNINDENT .SS Fortran Syntax .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C USE MPI ! or the older form: INCLUDE \(aqmpif.h\(aq MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR) SENDBUF(*), RECVBUF(*) INTEGER COUNT, DATATYPE, OP, COMM, IERROR MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR) SENDBUF(*), RECVBUF(*) INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR MPI_SCAN_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR) SENDBUF(*), RECVBUF(*) INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR .ft P .fi .UNINDENT .UNINDENT .SS Fortran 2008 Syntax .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C USE mpi_f08 MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror) TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf TYPE(*), DIMENSION(..) :: recvbuf INTEGER, INTENT(IN) :: count TYPE(MPI_Datatype), INTENT(IN) :: datatype TYPE(MPI_Op), INTENT(IN) :: op TYPE(MPI_Comm), INTENT(IN) :: comm INTEGER, OPTIONAL, INTENT(OUT) :: ierror MPI_Iscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror) TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf INTEGER, INTENT(IN) :: count TYPE(MPI_Datatype), INTENT(IN) :: datatype TYPE(MPI_Op), INTENT(IN) :: op TYPE(MPI_Comm), INTENT(IN) :: comm TYPE(MPI_Request), INTENT(OUT) :: request INTEGER, OPTIONAL, INTENT(OUT) :: ierror MPI_Scan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request, ierror) TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf INTEGER, INTENT(IN) :: count TYPE(MPI_Datatype), INTENT(IN) :: datatype TYPE(MPI_Op), INTENT(IN) :: op TYPE(MPI_Comm), INTENT(IN) :: comm TYPE(MPI_Info), INTENT(IN) :: info TYPE(MPI_Request), INTENT(OUT) :: request INTEGER, OPTIONAL, INTENT(OUT) :: ierror .ft P .fi .UNINDENT .UNINDENT .SH INPUT PARAMETERS .INDENT 0.0 .IP \(bu 2 \fBsendbuf\fP: Send buffer (choice). .IP \(bu 2 \fBcount\fP: Number of elements in input buffer (integer). .IP \(bu 2 \fBdatatype\fP: Data type of elements of input buffer (handle). .IP \(bu 2 \fBop\fP: Operation (handle). .IP \(bu 2 \fBcomm\fP: Communicator (handle). .IP \(bu 2 \fBinfo\fP: Info (handle, persistent only) .UNINDENT .SH OUTPUT PARAMETERS .INDENT 0.0 .IP \(bu 2 \fBrecvbuf\fP: Receive buffer (choice). .IP \(bu 2 \fBrequest\fP: Request (handle, non\-blocking only). .IP \(bu 2 \fBierror\fP: Fortran only: Error status (integer). .UNINDENT .SH DESCRIPTION .sp \fI\%MPI_Scan\fP is used to perform an inclusive prefix reduction on data distributed across the calling processes. The operation returns, in the \fIrecvbuf\fP of the process with rank i, the reduction (calculated according to the function \fIop\fP) of the values in the \fIsendbuf\fPs of processes with ranks 0, …, i (inclusive). The type of operations supported, their semantics, and the constraints on send and receive buffers are as for \fI\%MPI_Reduce\fP\&. .SH EXAMPLE .sp This example uses a user\-defined operation to produce a segmented scan. A segmented scan takes, as input, a set of values and a set of logicals, where the logicals delineate the various segments of the scan. For example, .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C values v1 v2 v3 v4 v5 v6 v7 v8 logicals 0 0 1 1 1 0 0 1 result v1 v1+v2 v3 v3+v4 v3+v4+v5 v6 v6+v7 v8 .ft P .fi .UNINDENT .UNINDENT .sp The result for rank j is thus the sum v(i) + … + v(j), where i is the lowest rank such that for all ranks n, i <= n <= j, logical(n) = logical(j). The operator that produces this effect is .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C [ u ] [ v ] [ w ] [ ] o [ ] = [ ] [ i ] [ j ] [ j ] where ( u + v if i = j w = ( ( v if i != j .ft P .fi .UNINDENT .UNINDENT .sp Note that this is a noncommutative operator. C code that implements it is given below. .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C typedef struct { double val; int log; } SegScanPair; /* * the user\-defined function */ void segScan(SegScanPair *in, SegScanPair *inout, int *len, MPI_Datatype *dptr) { int i; SegScanPair c; for (i = 0; i < *len; ++i) { if (in\->log == inout\->log) c.val = in\->val + inout\->val; else c.val = inout\->val; c.log = inout\->log; *inout = c; in++; inout++; } } .ft P .fi .UNINDENT .UNINDENT .sp Note that the inout argument to the user\-defined function corresponds to the right\-hand operand of the operator. When using this operator, we must be careful to specify that it is noncommutative, as in the following: .INDENT 0.0 .INDENT 3.5 .sp .nf .ft C int i, base; SeqScanPair a, answer; MPI_Op myOp; MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT}; MPI_Aint disp[2]; int blocklen[2] = {1, 1}; MPI_Datatype sspair; /* * explain to MPI how type SegScanPair is defined */ MPI_Get_address(a, disp); MPI_Get_address(a.log, disp + 1); base = disp[0]; for (i = 0; i < 2; ++i) disp[i] \-= base; MPI_Type_struct(2, blocklen, disp, type, &sspair); MPI_Type_commit(&sspair); /* * create the segmented\-scan user\-op * noncommutative \- set commute (arg 2) to 0 */ MPI_Op_create((MPI_User_function *)segScan, 0, &myOp); \&... MPI_Scan(a, answer, 1, sspair, myOp, comm); .ft P .fi .UNINDENT .UNINDENT .SH USE OF IN-PLACE OPTION .sp When the communicator is an intracommunicator, you can perform a scanning operation in place (the output buffer is used as the input buffer). Use the variable MPI_IN_PLACE as the value of the \fIsendbuf\fP argument. The input data is taken from the receive buffer and replaced by the output data. .SH NOTES ON COLLECTIVE OPERATIONS .sp The reduction functions of type MPI_Op do not return an error value. As a result, if the functions detect an error, all they can do is either call \fI\%MPI_Abort\fP or silently skip the problem. Thus, if the error handler is changed from MPI_ERRORS_ARE_FATAL to something else (e.g., MPI_ERRORS_RETURN), then no error may be indicated. .sp The reason for this is the performance problems in ensuring that all collective routines return the same error value. .SH ERRORS .sp Almost all MPI routines return an error value; C routines as the return result of the function and Fortran routines in the last argument. .sp Before the error value is returned, the current MPI error handler associated with the communication object (e.g., communicator, window, file) is called. If no communication object is associated with the MPI call, then the call is considered attached to MPI_COMM_SELF and will call the associated MPI error handler. When MPI_COMM_SELF is not initialized (i.e., before \fI\%MPI_Init\fP/\fI\%MPI_Init_thread\fP, after \fI\%MPI_Finalize\fP, or when using the Sessions Model exclusively) the error raises the initial error handler. The initial error handler can be changed by calling \fI\%MPI_Comm_set_errhandler\fP on MPI_COMM_SELF when using the World model, or the mpi_initial_errhandler CLI argument to mpiexec or info key to \fI\%MPI_Comm_spawn\fP/\fI\%MPI_Comm_spawn_multiple\fP\&. If no other appropriate error handler has been set, then the MPI_ERRORS_RETURN error handler is called for MPI I/O functions and the MPI_ERRORS_ABORT error handler is called for all other MPI functions. .sp Open MPI includes three predefined error handlers that can be used: .INDENT 0.0 .IP \(bu 2 \fBMPI_ERRORS_ARE_FATAL\fP Causes the program to abort all connected MPI processes. .IP \(bu 2 \fBMPI_ERRORS_ABORT\fP An error handler that can be invoked on a communicator, window, file, or session. When called on a communicator, it acts as if \fI\%MPI_Abort\fP was called on that communicator. If called on a window or file, acts as if \fI\%MPI_Abort\fP was called on a communicator containing the group of processes in the corresponding window or file. If called on a session, aborts only the local process. .IP \(bu 2 \fBMPI_ERRORS_RETURN\fP Returns an error code to the application. .UNINDENT .sp MPI applications can also implement their own error handlers by calling: .INDENT 0.0 .IP \(bu 2 \fI\%MPI_Comm_create_errhandler\fP then \fI\%MPI_Comm_set_errhandler\fP .IP \(bu 2 \fI\%MPI_File_create_errhandler\fP then \fI\%MPI_File_set_errhandler\fP .IP \(bu 2 \fI\%MPI_Session_create_errhandler\fP then \fI\%MPI_Session_set_errhandler\fP or at \fI\%MPI_Session_init\fP .IP \(bu 2 \fI\%MPI_Win_create_errhandler\fP then \fI\%MPI_Win_set_errhandler\fP .UNINDENT .sp Note that MPI does not guarantee that an MPI program can continue past an error. .sp See the \fI\%MPI man page\fP for a full list of \fI\%MPI error codes\fP\&. .sp See the Error Handling section of the MPI\-3.1 standard for more information. .sp \fBSEE ALSO:\fP .INDENT 0.0 .INDENT 3.5 .INDENT 0.0 .IP \(bu 2 \fI\%MPI_Exscan\fP .IP \(bu 2 \fI\%MPI_Op_create\fP .IP \(bu 2 \fI\%MPI_Reduce\fP .UNINDENT .UNINDENT .UNINDENT .SH COPYRIGHT 2003-2024, The Open MPI Community .\" Generated by docutils manpage writer. .