17.1.2. mpirun / mpiexec
mpirun, mpiexec — Execute serial and parallel jobs in Open MPI.
Note
mpirun
and mpiexec
are synonyms for each other.
Indeed, they are symbolic links to the same executable.
Using either of the names will produce the exact same
behavior.
17.1.2.1. SYNOPSIS
Single Process Multiple Data (SPMD) Model:
mpirun [ options ] <program> [ <args> ]
Multiple Instruction Multiple Data (MIMD) Model:
mpirun [ global_options ]
[ local_options1 ] <program1> [ <args1> ] :
[ local_options2 ] <program2> [ <args2> ] :
... :
[ local_optionsN ] <programN> [ <argsN> ]
Note that in both models, invoking mpirun
via an absolute path
name is equivalent to specifying the --prefix
option with a
<dir>
value equivalent to the directory where mpirun
resides,
minus its last subdirectory. For example:
shell$ /usr/local/bin/mpirun ...
is equivalent to
shell$ mpirun --prefix /usr/local
17.1.2.2. QUICK SUMMARY
If you are simply looking for how to run an MPI application, you probably want to use a command line of the following form:
shell$ mpirun [ -n X ] [ --hostfile <filename> ] <program>
This will run X
copies of <program>
in your current run-time
environment (if running under a supported resource manager, Open MPI’s
mpirun
will usually automatically use the corresponding resource
manager process starter, as opposed to ssh
(for example), which
require the use of a hostfile, or will default to running all X
copies on the localhost), scheduling (by default) in a round-robin
fashion by CPU slot. See the rest of this documentation for more
details.
Please note that mpirun
automatically binds processes to hardware
resources. Three binding patterns are used in the absence of any
further directives (See map/rank/bind defaults for more details):
Bind to core: when the number of processes is <= 2
Bind to package: when the number of processes is > 2
Bind to none: when oversubscribed
If your application uses threads, then you probably want to ensure
that you are either not bound at all (by specifying --bind-to none
),
or bound to multiple cores using an appropriate binding level or
specific number of processing elements per application process.
17.1.2.3. OPEN MPI’S USE OF PRRTE
Open MPI uses the PMIx Reference Runtime Environment (PRRTE) as the main engine for launching, monitoring, and terminating MPI processes.
Much of the documentation below is directly imported from PRRTE. As such, it frequently refers to PRRTE concepts and command line options. Except where noted, these concepts and command line argument are all applicable to Open MPI as well. Open MPI extends the available PRRTE command line options, and also slightly modifies the PRRTE’s default behaviors in a few cases. These will be specifically described in the docuemtnation below.
17.1.2.4. COMMAND LINE OPTIONS
The core of Open MPI’s mpirun
processing is performed via the
PRRTE. Specifically: mpirun
is
effectively a wrapper around prterun
, but mpirun
’s CLI options
are slightly different than PRRTE’s CLI commands.
17.1.2.4.1. No content
There is no meaningful content in this file because Open MPI was either:
Built without PRRTE support.
Built with a PRRTE that was too old to include machine-readable documentation that could be incorporated into Open MPI’s documentation.
If you build Open MPI with a newer version of PRRTE (and have the
Sphinx tool available when you run Open MPI’s configure
command),
you should get more meaningful documentation here.
Hence, there is no documentation for this section.
Sorry!
17.1.2.5. OPTIONS (OLD / HARD-CODED CONTENT — TO BE AUDITED
This is old content
This is the old section of manually hard-coded content. It should probably be read / audited and see what we want to keep and what we want to discard.
Feel free to refer to https://docs.prrte.org/ rather than replicating content here (e.g., for the definition of a slot and other things).
mpirun will send the name of the directory where it was invoked on the local node to each of the remote nodes, and attempt to change to that directory. See the “Current Working Directory” section below for further details.
<program>
: The program executable. This is identified as the first non-recognized argument to mpirun.<args>
: Pass these run-time arguments to every new process. These must always be the last arguments to mpirun. If an app context file is used,<args>
will be ignored.-h
,--help
: Display help for this command-q
,--quiet
: Suppress informative messages from orterun during application execution.-v
,--verbose
:` Be verbose-V
,--version
: Print version number. If no other arguments are given, this will also cause orterun to exit.-N <num>
: Launch num processes per node on all allocated nodes (synonym for--npernode
).--display-map
: Display a table showing the mapped location of each process prior to launch.--display-allocation
: Display the detected resource allocation.--output-proctable
: Output the debugger proctable after launch.--dvm
: Create a persistent distributed virtual machine (DVM).--max-vm-size <size>
: Number of daemons to start.
Use one of the following options to specify which hosts (nodes) of the cluster to run on. Note that as of the start of the v1.8 release, mpirun will launch a daemon onto each host in the allocation (as modified by the following options) at the very beginning of execution, regardless of whether or not application processes will eventually be mapped to execute there. This is done to allow collection of hardware topology information from the remote nodes, thus allowing us to map processes against known topology. However, it is a change from the behavior in prior releases where daemons were only launched after mapping was complete, and thus only occurred on nodes where application processes would actually be executing.
-H
,--host <host1,host2,...,hostN>
: list of hosts on which to invoke processes.--hostfile <hostfile>
: Provide a hostfile to use.--default-hostfile <hostfile>
: Provide a default hostfile.--machinefile <machinefile>
: Synonym for--hostfile
.--cpu-set <list>
: Restrict launched processes to the specified logical CPUs on each node (comma-separated list). Note that the binding options will still apply within the specified envelope — e.g., you can elect to bind each process to only one CPU within the specified CPU set.
The following options specify the number of processes to launch. Note that none of the options imply a particular binding policy — e.g., requesting N processes for each package does not imply that the processes will be bound to the package.
-n
,--n
,-c
,-np <#>
: Run this many copies of the program on the given nodes. This option indicates that the specified file is an executable program and not an application context. If no value is provided for the number of copies to execute (i.e., neither the-n
nor its synonyms are provided on the command line), Open MPI will automatically execute a copy of the program on each process slot (see PRRTE’s defintion of “slot” for description of a “process slot”). This feature, however, can only be used in the SPMD model and will return an error (without beginning execution of the application) otherwise.Note
The
-n
option is the preferred option to be used to specify the number of copies of the program to be executed, but the alternate options are also accepted.--map-by ppr:N:<object>
: Launch N times the number of objects of the specified type on each node.--npersocket <#persocket>
: On each node, launch this many processes times the number of processor sockets on the node. The -npersocket option also turns on the--bind-to-socket
option. (deprecated in favor of--map-by ppr:n:package
)--npernode <#pernode>
: On each node, launch this many processes. (deprecated in favor of--map-by ppr:n:node
).--pernode
: On each node, launch one process — equivalent to--npernode 1
. (deprecated in favor of--map-by ppr:1:node
)
To map processes:
--map-by <object>
: Map to the specified object, defaults topackage
. Supported options includeslot
,hwthread
,core
,L1cache
,L2cache
,L3cache
,package
,numa
,node
,seq
,rankfile
,pe-list=#
, andppr
. Any object can include modifiers by adding a:
and any combination of the following:pe=n
: bindn
processing elements to each procspan
: load balance the processes across the allocationoversubscribe
: allow more processes on a node than processing elementsnooversubscribe
: do not allow more processes on a node than processing elements (default)nolocal
: do not place processes on the same host as thempirun
processhwtcpus
: use hardware threads as CPU slots for mappingcorecpus
: use processor cores as CPU slots for mapping (default)file=filename
: used withrankfile
; usefilename
to specify the file to useordered
: used withpe-list
to bind each process to one of the specified processing elements
Note
socket
is also accepted as an alias forpackage
.--bycore
: Map processes by core (deprecated in favor of--map-by core
).--byslot
: Map and rank processes round-robin by slot (deprecated in favor of--map-by slot
).--nolocal
: Do not run any copies of the launched application on the same node as orterun is running. This option will override listing the localhost with--host
or any other host-specifying mechanism. Alias for--map-by :nolocal
.--nooversubscribe
: Do not oversubscribe any nodes; error (without starting any processes) if the requested number of processes would cause oversubscription. This option implicitly sets “max_slots” equal to the “slots” value for each node. (Enabled by default). Alias for--map-by :nooversubscribe
.--oversubscribe
: Nodes are allowed to be oversubscribed, even on a managed system, and overloading of processing elements. Alias for--map-by :oversubscribe
.--bynode
: Launch processes one per node, cycling by node in a round-robin fashion. This spreads processes evenly among nodes and assigns MPI_COMM_WORLD ranks in a round-robin, “by node” manner. (deprecated in favor of--map-by node
)--cpu-list <cpus>
: Comma-delimited list of processor IDs to which to bind processes [default=``NULL``]. Processor IDs are interpreted as hwloc logical core IDs.Note
You can run Run the hwloc
lstopo(1)
command to see a list of available cores and their logical IDs.
To order processes’ ranks in MPI_COMM_WORLD:
--rank-by <mode>
: Rank in round-robin fashion according to the specified mode, defaults to slot. Supported options includeslot
,node
,fill
, andspan
.
For process binding:
--bind-to <object>
: Bind processes to the specified object, defaults tocore
. Supported options includeslot
,hwthread
,core
,l1cache
,l2cache
,l3cache
,package
,numa
, andnone
.--cpus-per-proc <#perproc>
: Bind each process to the specified number of cpus. (deprecated in favor of--map-by <obj>:PE=n
)--cpus-per-rank <#perrank>
: Alias for--cpus-per-proc
. (deprecated in favor of--map-by <obj>:PE=n
)--bind-to-core
Bind processes to cores (deprecated in favor of--bind-to core
)--bind-to-socket
: Bind processes to processor sockets (deprecated in favor of--bind-to package
)--report-bindings
: Report any bindings for launched processes.
For rankfiles:
--rankfile <rankfile>
: Provide a rankfile file. (deprecated in favor of--map-by rankfile:file=FILE
)
To manage standard I/O:
--output-filename <filename>
: Redirect the stdout, stderr, and stddiag of all processes to a process-unique version of the specified filename. Any directories in the filename will automatically be created. Each output file will consist offilename.id
, where theid
will be the processes’ rank in MPI_COMM_WORLD, left-filled with zero’s for correct ordering in listings. A relative path value will be converted to an absolute path based on the cwd where mpirun is executed. Note that this will not work on environments where the file system on compute nodes differs from that where mpirun(1) is executed.--stdin <rank>
: The MPI_COMM_WORLD rank of the process that is to receive stdin. The default is to forward stdin to MPI_COMM_WORLD rank 0, but this option can be used to forward stdin to any process. It is also acceptable to specify none, indicating that no processes are to receive stdin.--merge-stderr-to-stdout
: Merge stderr to stdout for each process.--tag-output
: Tag each line of output to stdout, stderr, and stddiag with[jobid, MCW_rank]<stdxxx>
indicating the process jobid and MPI_COMM_WORLD rank of the process that generated the output, and the channel which generated it.--timestamp-output
: Timestamp each line of output to stdout, stderr, and stddiag.--xml
: Provide all output to stdout, stderr, and stddiag in an XML format.--xml-file <filename>
Provide all output in XML format to the specified file.--xterm <ranks>
: Display the output from the processes identified by their MPI_COMM_WORLD ranks in separate xterm windows. The ranks are specified as a comma-separated list of ranges, with a-1
indicating all. A separate window will be created for each specified process.Note
xterm will normally terminate the window upon termination of the process running within it. However, by adding a
!
to the end of the list of specified ranks, the proper options will be provided to ensure that xterm keeps the window open after the process terminates, thus allowing you to see the process’ output. Each xterm window will subsequently need to be manually closed. Note: In some environments, xterm may require that the executable be in the user’s path, or be specified in absolute or relative terms. Thus, it may be necessary to specify a local executable as./my_mpi_app
instead of justmy_mpi_app
. If xterm fails to find the executable,mpirun
will hang, but still respond correctly to a ctrl-C. If this happens, please check that the executable is being specified correctly and try again.
To manage files and runtime environment:
--path <path>
:<path>
that will be used when attempting to locate the requested executables. This is used prior to using the localPATH
environment variable setting.--prefix <dir>
: Prefix directory that will be used to set thePATH
andLD_LIBRARY_PATH
on the remote node before invoking Open MPI or the target process. See the Remote Execution section, below.--noprefix
: Disable the automatic--prefix
behavior--preload-binary
: Copy the specified executable(s) to remote machines prior to starting remote processes. The executables will be copied to the Open MPI session directory and will be deleted upon completion of the job.--preload-files <files>
: Preload the comma-separated list of files to the current working directory of the remote machines where processes will be launched prior to starting those processes.--set-cwd-to-session-dir
: Set the working directory of the started processes to their session directory.--wd <dir>
: Synonym for-wdir
.--wdir <dir>
: Change to the directory<dir>
before the user’s program executes. See the Current Working Directory section for notes on relative paths. Note: If the--wdir
option appears both on the command line and in an application context, the context will take precedence over the command line. Thus, if the path to the desired wdir is different on the backend nodes, then it must be specified as an absolute path that is correct for the backend node.-x <env>
: Export the specified environment variables to the remote nodes before executing the program. Only one environment variable can be specified per-x
option. Existing environment variables can be specified or new variable names specified with corresponding values. For example:shell$ mpirun -x DISPLAY -x OFILE=/tmp/out ...
The parser for the
-x
option is not very sophisticated; it does not even understand quoted values. Users are advised to set variables in the environment, and then use-x
to export (not define) them.
Setting MCA parameters:
--gmca <key> <value>
: Pass global MCA parameters that are applicable to all contexts.<key>
is the parameter name;<value>
is the parameter value.--mca <key> <value>
: Send arguments to various MCA modules. See the Setting MCA Parameters section for mode details.--tune <tune_file>
: Specify a tune file to set arguments for various MCA modules and environment variables. See the :ref:` Setting MCA parameters and environment variables from file <man1-mpirun-setting-mca-params-from-file>`.--am <arg>
is an alias for--tune <arg>
.
For debugging:
--get-stack-traces
: When paired with the--timeout
option,mpirun
will obtain and print out stack traces from all launched processes that are still alive when the timeout expires. Note that obtaining stack traces can take a little time and produce a lot of output, especially for large process-count jobs.--timeout <seconds>
: The maximum number of seconds thatmpirun
will run. After this many seconds,mpirun
will abort the launched job and exit with a non-zero exit status. Using--timeout
can be also useful when combined with the--get-stack-traces
option.
There are also other options:
--allow-run-as-root
: Allowmpirun
to run when executed by the root user (mpirun
defaults to aborting when launched as the root user). Be sure to see the Running as root section for more detail.--app <appfile>
: Provide an appfile, ignoring all other command line options.--continuous
: Job is to run until explicitly terminated.--disable-recovery
: Disable recovery (resets all recovery options to off).--do-not-launch
: Perform all necessary operations to prepare to launch the application, but do not actually launch it.--enable-recovery
: Enable recovery from process failure (default: disabled)--leave-session-attached
: Do not detach back-end daemons used by this application. This allows error messages from the daemons as well as the underlying environment (e.g., when failing to launch a daemon) to be output.--max-restarts <num>
: Max number of times to restart a failed process.--personality <list>
: Comma-separated list of programming model, languages, and containers being used (default=``ompi``).--ppr <list>
: Comma-separated list of number of processes on a given resource type (default: none). Alias for--map-by ppr:N:OBJ
.--report-child-jobs-separately
: Return the exit status of the primary job only.--report-events <URI>
: Report events to a tool listening at the specified URI.--report-pid <channel>
: Print outmpirun
’s PID during startup. The channel must be either a-
to indicate that the PID is to be output to stdout, a+
to indicate that the PID is to be output to stderr, or a filename to which the PID is to be written.--report-uri <channel>
: Print outmpirun
’s URI during startup. The channel must be either a-
to indicate that the URI is to be output to stdout, a+
to indicate that the URI is to be output to stderr, or a filename to which the URI is to be written.--show-progress
: Output a brief periodic report on launch progress.--terminate
: Terminate the DVM.--use-hwthread-cpus
: Use hardware threads as independent CPUs.Note that if a number of slots is not provided to Open MPI (e.g., via the
slots
keyword in a hostfile or from a resource manager such as Slurm), the use of this option changes the default calculation of number of slots on a node. See the PRRTE’s defintion of “slot” for more details.Also note that the use of this option changes the Open MPI’s definition of a “processor element” from a processor core to a hardware thread. See PRRTE’s defintion of a “processor element” for more details.
The following options are useful for developers; they are not generally useful to most Open MPI users:
--debug-daemons
: Enable debugging of the run-time daemons used by this application.--debug-daemons-file
: Enable debugging of the run-time daemons used by this application, storing output in files.--display-devel-map
: Display a more detailed table showing the mapped location of each process prior to launch.--display-topo
: Display the topology as part of the process map just before launch.--launch-agent
: Name of the executable that is to be used to start processes on the remote nodes. The default isPRRTEd
. This option can be used to test new daemon concepts, or to pass options back to the daemons without having mpirun itself see them. For example, specifying a launch agent ofPRRTEd -mca odls_base_verbose 5
allows the developer to ask thePRRTEd
for debugging output without clutter frommpirun
itself.--report-state-on-timeout
: When paired with the--timeout
command line option, report the run-time subsystem state of each process when the timeout expires.
There may be other options listed with mpirun --help
.
17.1.2.5.1. Environment Variables
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
MPIEXEC_TIMEOUT
: Synonym for the--timeout
command line option.
17.1.2.6. DESCRIPTION
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
One invocation of mpirun
starts an MPI application running under Open
MPI. If the application is single process multiple data (SPMD), the
application can be specified on the mpirun
command line.
If the application is multiple instruction multiple data (MIMD), comprising of multiple programs, the set of programs and argument can be specified in one of two ways: Extended Command Line Arguments, and Application Context.
An application context describes the MIMD program set including all arguments in a separate file. This file essentially contains multiple mpirun command lines, less the command name itself. The ability to specify different options for different instantiations of a program is another reason to use an application context.
Extended command line arguments allow for the description of the
application layout on the command line using colons (:
) to
separate the specification of programs and arguments. Some options are
globally set across all specified programs (e.g., --hostfile
),
while others are specific to a single program (e.g., -n
).
17.1.2.6.1. Specifying Host Nodes
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Host nodes can be identified on the mpirun
command line with the
--host
option or in a hostfile.
For example:
shell$ mpirun -H aa,aa,bb ./a.out
Launches two processes on node aa
and one on bb
.
Or, consider the hostfile:
shell$ cat myhostfile
aa slots=2
bb slots=2
cc slots=2
Here, we list both the host names (aa
, bb
, and cc
) but
also how many slots there are for each.
shell$ mpirun --hostfile myhostfile ./a.out
will launch two processes on each of the three nodes.
shell$ mpirun --hostfile myhostfile --host aa ./a.out
will launch two processes, both on node aa
.
shell$ mpirun --hostfile myhostfile --host dd ./a.out
will find no hosts to run on and will abort with an error. That is,
the specified host dd
is not in the specified hostfile.
When running under resource managers (e.g., Slurm, Torque, etc.), Open MPI will obtain both the hostnames and the number of slots directly from the resource manager.
17.1.2.6.2. Specifying Number of Processes
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
As we have just seen, the number of processes to run can be set using the hostfile. Other mechanisms exist.
The number of processes launched can be specified as a multiple of the number of nodes or processor packages available. For example,
shell$ mpirun -H aa,bb --map-by ppr:2:package ./a.out
launches processes 0-3 on node aa
and process 4-7 on node bb
(assuming aa
and bb
both contain 4 slots each).
shell$ mpirun -H aa,bb --map-by ppr:2:node ./a.out
launches processes 0-1 on node aa
and processes 2-3 on node bb
.
shell$ mpirun -H aa,bb --map-by ppr:1:node ./a.out
launches one process per host node.
mpirun -H aa,bb --pernode ./a.out
is the same as --map-by ppr:1:node
and --npernode 1
.
Another alternative is to specify the number of processes with the -n
option. Consider now the hostfile:
shell$ cat myhostfile
aa slots=4
bb slots=4
cc slots=4
Now run with myhostfile
:
shell$ mpirun --hostfile myhostfile -n 6 ./a.out
will launch processes 0-3 on node aa
and processes 4-5 on node
bb
. The remaining slots in the hostfile will not be used since
the -n
option indicated that only 6 processes should be launched.
17.1.2.6.3. Mapping Processes to Nodes: Using Policies
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
The examples above illustrate the default mapping of process processes
to nodes. This mapping can also be controlled with various mpirun
options that describe mapping policies.
Consider the same hostfile as above, again with -n 6
. The table
below lists a few mpirun
variations, and shows which
MPI_COMM_WORLD ranks end up on which node:
Command |
Node |
Node |
Node |
---|---|---|---|
|
0 1 2 3 |
4 5 |
|
|
0 3 |
1 4 |
2 5 |
|
0 1 2 3 |
4 5 |
The --map-by node
option will load balance the processes across the
available nodes, numbering each process in a round-robin fashion.
The --nolocal
option prevents any processes from being mapped onto
the local host (in this case node aa
). While mpirun
typically
consumes few system resources, --nolocal
can be helpful for
launching very large jobs where mpirun may actually need to use
noticeable amounts of memory and/or processing time.
Just as -n
can specify fewer processes than there are slots, it
can also oversubscribe the slots. For example, with the same
hostfile:
shell$ mpirun --hostfile myhostfile -n 14 ./a.out
will launch processes 0-3 on node aa
, 4-7 on bb
, and 8-11 on
cc
. It will then add the remaining two processes to whichever
nodes it chooses.
One can also specify limits to oversubscription. For example, with the same hostfile:
shell$ mpirun --hostfile myhostfile -n 14 --nooversubscribe ./a.out
will produce an error since --nooversubscribe
prevents
oversubscription.
Limits to oversubscription can also be specified in the hostfile itself:
shell$ cat myhostfile
aa slots=4 max_slots=4
bb max_slots=4
cc slots=4
The max_slots
field specifies such a limit. When it does, the slots
value defaults to the limit. Now:
shell$ mpirun --hostfile myhostfile -n 14 ./a.out
causes the first 12 processes to be launched as before, but the
remaining two processes will be forced onto node cc
. The other
two nodes are protected by the hostfile against oversubscription by
this job.
Using the --nooversubscribe
option can be helpful since Open MPI
currently does not get max_slots
values from the resource manager.
Of course, -n
can also be used with the -H
or -host
option. For example:
shell$ mpirun -H aa,bb -n 8 ./a.out
launches 8 processes. Since only two hosts are specified, after the
first two processes are mapped, one to aa
and one to bb
, the
remaining processes oversubscribe the specified hosts.
And here is a MIMD example:
shell$ mpirun -H aa -n 1 hostname : -H bb,cc -n 2 uptime
will launch process 0 running hostname on node aa
and processes 1
and 2 each running uptime on nodes bb
and cc
, respectively.
17.1.2.6.4. Mapping, Ranking, and Binding: Oh My!
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Open MPI employs a three-phase procedure for assigning process locations and ranks:
Mapping: Assigns a default location to each process
Ranking: Assigns an MPI_COMM_WORLD rank value to each process
Binding: Constrains each process to run on specific processors
The mapping step is used to assign a default location to each process based on the mapper being employed. Mapping by slot, node, and sequentially results in the assignment of the processes to the node level. In contrast, mapping by object, allows the mapper to assign the process to an actual object on each node.
Note that the location assigned to the process is independent of where it will be bound — the assignment is used solely as input to the binding algorithm.
The mapping of process processes to nodes can be defined not just with
general policies but also, if necessary, using arbitrary mappings that
cannot be described by a simple policy. One can use the “sequential
mapper,” which reads the hostfile line by line, assigning processes to
nodes in whatever order the hostfile specifies. Use the ---map-by seq
option. For example, using the same hostfile as before:
shell$ mpirun -hostfile myhostfile --map-by seq ./a.out
will launch three processes, one on each of nodes aa
, bb
, and cc
,
respectively. The slot counts don’t matter; one process is launched
per line on whatever node is listed on the line.
Another way to specify arbitrary mappings is with a rankfile, which gives you detailed control over process binding as well. Rankfiles are discussed below.
The second phase focuses on the ranking of the process within the
job’s MPI_COMM_WORLD. Open MPI separates this from the mapping
procedure to allow more flexibility in the relative placement of MPI
processes. This is best illustrated by considering the following
cases where we used the --np 8 --map-by ppr:2:package --host aa:4,bb:4
option:
Option |
Node |
Node |
---|---|---|
|
0 1 | 2 3 |
4 5 | 6 7 |
|
0 4 | 1 5 |
2 6 | 3 7 |
|
0 2 | 4 6 |
1 3 | 5 7 |
Ranking by fill
assigns MCW ranks in a simple progression across each
node. Ranking by span
and by slot
provide the identical
result — a round-robin progression of the packages across all nodes
before returning to the first package on the first node. Ranking by
node
assigns MCW ranks iterating first across nodes then by package.
The binding phase actually binds each process to a given set of processors. This can improve performance if the operating system is placing processes suboptimally. For example, it might oversubscribe some multi-core processor packages, leaving other packages idle; this can lead processes to contend unnecessarily for common resources. Or, it might spread processes out too widely; this can be suboptimal if application performance is sensitive to interprocess communication costs. Binding can also keep the operating system from migrating processes excessively, regardless of how optimally those processes were placed to begin with.
The processors to be used for binding can be identified in terms of
topological groupings — e.g., binding to an l3cache
will
bind each process to all processors within the scope of a single L3
cache within their assigned location. Thus, if a process is assigned
by the mapper to a certain package, then a --bind-to l3cache
directive will cause the process to be bound to the processors that
share a single L3 cache within that package.
Alternatively, processes can be mapped and bound to specified cores using
the --map-by pe-list=
option. For example, --map-by pe-list=0,2,5
will map three processes all three of which will be bound to logical cores
0,2,5
. If you intend to bind each of the three processes to different
cores then the :ordered
qualifier can be used like
--map-by pe-list=0,2,5:ordered
. In this example, the first process
on a node will be bound to CPU 0, the second process on the node will
be bound to CPU 2, and the third process on the node will be bound to
CPU 5.
Finally, --report-bindings
can be used to report bindings.
As an example, consider a node with two processor packages, each
comprised of four cores, and each of those cores contains one hardware
thread. The --report-bindings
option shows the binding of each process in a
descriptive manner. Below are some examples.
shell$ mpirun --np 4 --report-bindings --map-by core --bind-to core
[...] Rank 0 bound to package[0][core:0]
[...] Rank 1 bound to package[0][core:1]
[...] Rank 2 bound to package[0][core:2]
[...] Rank 3 bound to package[0][core:3]
In the above case, the processes bind to successive cores.
shell$ mpirun --np 4 --report-bindings --map-by package --bind-to package
[...] Rank 0 bound to package[0][core:0-3]
[...] Rank 1 bound to package[0][core:0-3]
[...] Rank 2 bound to package[1][core:4-7]
[...] Rank 3 bound to package[1][core:4-7]
In the above case, processes bind to all cores on successive packages.
The processes cycle through the processor packages in a
round-robin fashion as many times as are needed. By default, the processes
are ranked in a fill
manner.
shell$ mpirun --np 4 --report-bindings --map-by package --bind-to package --rank-by span
[...] Rank 0 bound to package[0][core:0-3]
[...] Rank 1 bound to package[1][core:4-7]
[...] Rank 2 bound to package[0][core:0-3]
[...] Rank 3 bound to package[1][core:4-7]
The above case demonstrates the difference
in ranking when the span
qualifier is used instead of the default.
shell$ mpirun --np 4 --report-bindings --map-by slot:PE=2 --bind-to core
[...] Rank 0 bound to package[0][core:0-1]
[...] Rank 1 bound to package[0][core:2-3]
[...] Rank 2 bound to package[0][core:4-5]
[...] Rank 3 bound to package[0][core:6-7]
In the above case, the output shows us that 2 cores have been bound per
process. Specifically, the mapping by slot
with the PE=2
qualifier
indicated that each slot (i.e., process) should consume two processor
elements. By default, Open MPI defines “processor element” as “core”,
and therefore the --bind-to core
caused each process to be bound to
both of the cores to which it was mapped.
shell$ mpirun --np 4 --report-bindings --map-by slot:PE=2 --use-hwthread-cpus
[...]] Rank 0 bound to package[0][hwt:0-1]
[...]] Rank 1 bound to package[0][hwt:2-3]
[...]] Rank 2 bound to package[0][hwt:4-5]
[...]] Rank 3 bound to package[0][hwt:6-7]
In the above case, we replace the --bind-to core
with
--use-hwthread-cpus
. The --use-hwthread-cpus
is converted into
--bind-to hwthread
and tells the --report-bindings
output to show the
hardware threads to which a process is bound. In this case, processes are
bound to 2 hardware threads per process.
shell$ mpirun --np 4 --report-bindings --bind-to none
[...] Rank 0 is not bound (or bound to all available processors)
[...] Rank 1 is not bound (or bound to all available processors)
[...] Rank 2 is not bound (or bound to all available processors)
[...] Rank 3 is not bound (or bound to all available processors)
In the above case, binding is turned off and are reported as such.
Open MPI’s support for process binding depends on the underlying operating system. Therefore, certain process binding options may not be available on every system.
Process binding can also be set with MCA parameters. Their usage is
less convenient than that of mpirun
options. On the other hand,
MCA parameters can be set not only on the mpirun command line, but
alternatively in a system or user mca-params.conf
file or as
environment variables, as described in the Setting MCA
Parameters. These are MCA parameters for
the PRRTE runtime so the command line argument --PRRTEmca
must be used to
pass the MCA parameter key/value pair. Alternatively, the MCA parameter key/
value pair may be specific on the command line by prefixing the key with
PRRTE_MCA_
. Some examples include:
Option |
PRRTE MCA parameter key |
Value |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17.1.2.6.5. Defaults for Mapping, Ranking, and Binding
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
If the user does not specify each of --map-by
, --rank-by
, and --bind-to
option then the default values are as follows:
If no options are specified then
If the number of processes is less than or equal to 2, then:
--map-by
iscore
--bind-to
iscore
--rank-by
isspan
Result:
--map-by core --bind-to core --rank-by span
Otherwise:
--map-by
ispackage
--bind-to
ispackage
--rank-by
isfill
Result:
--map-by package --bind-to package --rank-by fill
If only
--map-by OBJ
(whereOBJ
is something likecore
) is specified, then:--map-by
specifiedOBJ
--bind-to
uses the sameOBJ
as--map-by
--rank-by
defaults tofill
Result:
--map-by OBJ --bind-to OBJ --rank-by fill
If only
--bind-to OBJ
(whereOBJ
is something likecore
) is specified, then:--map-by
is eithercore
orpackage
depending on the number of processes--bind-to
specifiedOBJ
--rank-by
defaults tofill
Result:
--map-by OBJ --bind-to OBJ --rank-by fill
If
--map-by OBJ1 --bind-to OBJ2
, then:--map-by
specifiedOBJ1
--bind-to
specifiedOBJ2
--rank-by
defaults tofill
Result:
--map-by OBJ2 --bind-to OBJ2 --rank-by fill
Consider 2 identical hosts (hostA
and hostB
) with 2 packages (denoted by []
) each with 8 cores (denoted by /../
) and 2 hardware threads per core (denoted by a .
).
Default of --map-by core --bind-to core --rank-by span
when the number of processes is less than or equal to 2.
shell$ mpirun --np 2 --host hostA:4,hostB:2 ./a.out
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
Default of --map-by package --bind-to package --rank-by fill
when the number of processes is greater than 2.
shell$ mpirun --np 4 --host hostA:4,hostB:2 ./a.out
R0 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R1 hostA [BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
R3 hostA [../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB]
If only --map-by OBJ
is specified, then it implies --bind-to OBJ --rank-by fill
. The example below results in --map-by hwthread --bind-to hwthread --rank-by fill
shell$ mpirun --np 4 --map-by hwthread --host hostA:4,hostB:2 ./a.out
R0 hostA [B./../../../../../../..][../../../../../../../..]
R1 hostA [.B/../../../../../../..][../../../../../../../..]
R0 hostA [../B./../../../../../..][../../../../../../../..]
R1 hostA [../.B/../../../../../..][../../../../../../../..]
If only --bind-to OBJ
is specified, then --map-by
is determined by the number of processes and --rank-by fill
. The example below results in --map-by package --bind-to core --rank-by fill
shell$ mpirun --np 4 --bind-to core --host hostA:4,hostB:2 ./a.out
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../BB/../../../../../..][../../../../../../../..]
R2 hostA [../../../../../../../..][BB/../../../../../../..]
R3 hostA [../../../../../../../..][../BB/../../../../../..]
The mapping pattern might be better seen if we change the default --rank-by
from fill
to span
. First, the processes are mapped by package iterating between the two marking a core at a time. Next, the processes are ranked in a spanning manner that load balances them across the object they were mapped against. Finally, the processes are bound to the core that they were mapped againast.
shell$ mpirun --np 4 --bind-to core --rank-by span --host hostA:4,hostB:2 ./a.out
R0 hostA [BB/../../../../../../..][../../../../../../../..]
R1 hostA [../../../../../../../..][BB/../../../../../../..]
R2 hostA [../BB/../../../../../..][../../../../../../../..]
R3 hostA [../../../../../../../..][../BB/../../../../../..]
17.1.2.6.6. Rankfiles
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Rankfiles are text files that specify detailed information about how individual processes should be mapped to nodes, and to which processor(s) they should be bound. Each line of a rankfile specifies the location of one process (for MPI jobs, the process’ “rank” refers to its rank in MPI_COMM_WORLD). The general form of each line in the rankfile is:
rank <N>=<hostname> slot=<slot list>
For example:
shell$ cat myrankfile
rank 0=aa slot=1:0-2
rank 1=bb slot=0:0,1
rank 2=cc slot=2-3
shell$ mpirun -H aa,bb,cc,dd --map-by rankfile:file=myrankfile ./a.out
Means that:
Rank 0 runs on node aa, bound to logical package 1, cores 0-2.
Rank 1 runs on node bb, bound to logical package 0, cores 0 and 1.
Rank 2 runs on node cc, bound to logical cores 2 and 3.
Note that only logicical processor locations are supported. By default, the values specifed are assumed to be cores. If you intend to specify specific hardware threads then you must add the :hwtcpus
qualifier to the --map-by
command line option (e.g., --map-by rankfile:file=myrankfile:hwtcpus
).
If the binding specification overlaps between any two ranks then an error occurs. If you intend to allow processes to share the same logical processing unit then you must pass the --bind-to :overload-allowed
command line option to tell the runtime to ignore this check.
The hostnames listed above are “absolute,” meaning that actual
resolveable hostnames are specified. However, hostnames can also be
specified as “relative,” meaning that they are specified in relation
to an externally-specified list of hostnames (e.g., by mpirun
’s
--host
argument, a hostfile, or a job scheduler).
The “relative” specification is of the form +n<X>
, where X is an
integer specifying the Xth hostname in the set of all available
hostnames, indexed from 0. For example:
shell$ cat myrankfile
rank 0=+n0 slot=1:0-2
rank 1=+n1 slot=0:0,1
rank 2=+n2 slot=2-3
shell$ mpirun -H aa,bb,cc,dd --map-by rankfile:file=myrankfile ./a.out
All package/core slot locations are specified as logical indexes.
Note
The Open MPI v1.6 series used physical indexes. Starting in Open MPI v5.0 only logicial indexes are supported and the rmaps_rank_file_physical
MCA parameter is no longer recognized.
You can use tools such as Hwloc’s lstopo(1) to find the logical indexes of package and cores.
17.1.2.6.7. Application Context or Executable Program?
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
To distinguish the two different forms, mpirun looks on the command
line for --app
option. If it is specified, then the file named on
the command line is assumed to be an application context. If it is
not specified, then the file is assumed to be an executable program.
17.1.2.6.8. Locating Files
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
If no relative or absolute path is specified for a file, Open MPI will
first look for files by searching the directories specified by the
--path
option. If there is no --path
option set or if the
file is not found at the --path
location, then Open MPI will
search the user’s PATH
environment variable as defined on the
source node(s).
If a relative directory is specified, it must be relative to the
initial working directory determined by the specific starter used. For
example when using the ssh starter, the initial directory is $HOME
by default. Other starters may set the initial directory to the
current working directory from the invocation of mpirun
.
17.1.2.6.9. Current Working Directory
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
The --wdir
mpirun
option (and its synonym, --wd
) allows
the user to change to an arbitrary directory before the program is
invoked. It can also be used in application context files to specify
working directories on specific nodes and/or for specific
applications.
If the --wdir
option appears both in a context file and on the
command line, the context file directory will override the command
line value.
If the -wdir
option is specified, Open MPI will attempt to change
to the specified directory on all of the remote nodes. If this fails,
mpirun
will abort.
If the -wdir
option is not specified, Open MPI will send the
directory name where mpirun
was invoked to each of the remote
nodes. The remote nodes will try to change to that directory. If
they are unable (e.g., if the directory does not exist on that node),
then Open MPI will use the default directory determined by the
starter.
All directory changing occurs before the user’s program is invoked; it does not wait until MPI_INIT(3) is called.
17.1.2.6.10. Standard I/O
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Open MPI directs UNIX standard input to /dev/null
on all processes
except the MPI_COMM_WORLD rank 0 process. The MPI_COMM_WORLD rank 0
process inherits standard input from mpirun
.
Note
The node that invoked mpirun
need not be the same as the
node where the MPI_COMM_WORLD rank 0 process resides. Open
MPI handles the redirection of mpirun
’s standard input
to the rank 0 process.
Open MPI directs UNIX standard output and error from remote nodes to
the node that invoked mpirun
and prints it on the standard
output/error of mpirun
. Local processes inherit the standard
output/error of mpirun
and transfer to it directly.
Thus it is possible to redirect standard I/O for Open MPI applications
by using the typical shell redirection procedure on mpirun
. For
example:
shell$ mpirun -n 2 my_app < my_input > my_output
Note that in this example only the MPI_COMM_WORLD rank 0 process will
receive the stream from my_input
on stdin. The stdin on all the other
nodes will be tied to /dev/null
. However, the stdout from all nodes
will be collected into the my_output
file.
17.1.2.6.11. Signal Propagation
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
When mpirun
receives a SIGTERM and SIGINT, it will attempt to kill
the entire job by sending all processes in the job a SIGTERM, waiting
a small number of seconds, then sending all processes in the job a
SIGKILL.
SIGUSR1 and SIGUSR2 signals received by mpirun
are propagated to all
processes in the job.
A SIGTSTOP signal to mpirun
will cause a SIGSTOP signal to be sent
to all of the programs started by mpirun
and likewise a SIGCONT
signal to mpirun
will cause a SIGCONT sent.
Other signals are not currently propagated by mpirun
.
17.1.2.6.12. Process Termination / Signal Handling
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
During the run of an MPI application, if any process dies abnormally
(either exiting before invoking MPI_FINALIZE(3),
or dying as the result of a signal), mpirun
will print out an
error message and kill the rest of the MPI application.
User signal handlers should probably avoid trying to cleanup MPI state
(Open MPI is currently not async-signal-safe; see
MPI_INIT_THREAD(3) for details about
MPI_THREAD_MULTIPLE and thread safety). For example, if a
segmentation fault occurs in MPI_SEND(3) (perhaps
because a bad buffer was passed in) and a user signal handler is
invoked, if this user handler attempts to invoke MPI_FINALIZE(3), Bad Things could happen since Open MPI was already
“in” MPI when the error occurred. Since mpirun
will notice that the
process died due to a signal, it is probably not necessary (and
safest) for the user to only clean up non-MPI state.
17.1.2.6.13. Process Environment
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Processes in the MPI application inherit their environment from the
PRRTE daemon upon the node on which they are running. The
environment is typically inherited from the user’s shell. On remote
nodes, the exact environment is determined by the boot MCA module
used. The rsh launch module, for example, uses either rsh/ssh to
launch the PRRTE daemon on remote nodes, and typically executes one
or more of the user’s shell-setup files before launching the PRRTE
daemon. When running dynamically linked applications which require
the LD_LIBRARY_PATH
environment variable to be set, care must be
taken to ensure that it is correctly set when booting Open MPI.
See the Remote Execution section for more details.
17.1.2.6.14. Remote Execution
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Open MPI requires that the PATH
environment variable be set to
find executables on remote nodes (this is typically only necessary in
rsh- or ssh-based environments — batch/scheduled environments
typically copy the current environment to the execution of remote
jobs, so if the current environment has PATH
and/or
LD_LIBRARY_PATH
set properly, the remote nodes will also have it
set properly). If Open MPI was compiled with shared library support,
it may also be necessary to have the LD_LIBRARY_PATH
environment
variable set on remote nodes as well (especially to find the shared
libraries required to run user MPI applications).
However, it is not always desirable or possible to edit shell startup
files to set PATH
and/or LD_LIBRARY_PATH
. The --prefix
option is provided for some simple configurations where this is not
possible.
The --prefix
option takes a single argument: the base directory on
the remote node where Open MPI is installed. Open MPI will use this
directory to set the remote PATH
and LD_LIBRARY_PATH
before
executing any Open MPI or user applications. This allows running Open
MPI jobs without having pre-configured the PATH
and
LD_LIBRARY_PATH
on the remote nodes.
Open MPI adds the basename of the current node’s $bindir
(the
directory where Open MPI’s executables were installed) to the prefix
and uses that to set the PATH
on the remote node. Similarly, Open
MPI adds the basename of the current node’s $libdir
(the directory
where Open MPI’s libraries were installed) to the prefix and uses that
to set the LD_LIBRARY_PATH
on the remote node. For example:
Local bindir:
/local/node/directory/bin
Local libdir:
/local/node/directory/lib64
If the following command line is used:
shell$ mpirun --prefix /remote/node/directory
Open MPI will add /remote/node/directory/bin
to the PATH
and
/remote/node/directory/lib64
to the LD_LIBRARY_PATH
on the
remote node before attempting to execute anything.
The --prefix
option is not sufficient if the installation paths on
the remote node are different than the local node (e.g., if /lib
is used on the local node, but /lib64
is used on the remote node),
or if the installation paths are something other than a subdirectory
under a common prefix.
Note that executing mpirun
via an absolute pathname is equivalent
to specifying --prefix
without the last subdirectory in the
absolute pathname to mpirun
. For example:
shell$ /usr/local/bin/mpirun ...
is equivalent to
shell$ mpirun --prefix /usr/local
17.1.2.6.15. Exported Environment Variables
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
All environment variables that are named in the form OMPI_*
will
automatically be exported to new processes on the local and remote
nodes. Environmental parameters can also be set/forwarded to the new
processes using the MCA parameter mca_base_env_list
. The -x
option to mpirun has been deprecated, but the syntax of the MCA param
follows that prior example. While the syntax of the -x
option and
MCA param allows the definition of new variables, note that the parser
for these options are currently not very sophisticated — it does
not even understand quoted values. Users are advised to set variables
in the environment and use the option to export them; not to define
them.
17.1.2.6.16. Setting MCA Parameters
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
The --mca
switch allows the passing of parameters to various MCA
(Modular Component Architecture) modules. MCA modules have direct
impact on MPI programs because they allow tunable parameters to be set
at run time (such as which BTL communication device driver to use,
what parameters to pass to that BTL, etc.).
The --mca
switch takes two arguments: <key>
and <value>
.
The <key>
argument generally specifies which MCA module will
receive the value. For example, the <key>
btl
is used to
select which BTL to be used for transporting MPI messages. The
<value>
argument is the value that is passed. For example:
shell$ mpirun --mca btl tcp,self -n 1 my_mpi_app
This tells Open MPI to use the tcp
and self
BTLs, and to run a
single copy of my_mpi_app
an allocated node.
shell$ mpirun --mca btl self -n 1 my_mpi_app
Tells Open MPI to use the self
BTL, and to run a single copy of
my_mpi_app
an allocated node.
The --mca
switch can be used multiple times to specify different
<key> and/or <value>
arguments. If the same <key>
is
specified more than once, the <value>``s are concatenated with a
comma (
,``) separating them.
Note that the --mca
switch is simply a shortcut for setting
environment variables. The same effect may be accomplished by setting
corresponding environment variables before running mpirun
. The form
of the environment variables that Open MPI sets is:
OMPI_MCA_<key>=<value>
Thus, the --mca
switch overrides any previously set environment
variables. The --mca
settings similarly override MCA parameters
set in the $OPAL_PREFIX/etc/openmpi-mca-params.conf
or
$HOME/.openmpi/mca-params.conf
file.
Unknown <key>
arguments are still set as environment variable —
they are not checked (by mpirun) for correctness. Illegal or
incorrect <value>
arguments may or may not be reported — it
depends on the specific MCA module.
To find the available component types under the MCA architecture, or to find the available parameters for a specific component, use the ompi_info command. See the ompi_info(1) man page for detailed information on this command.
17.1.2.6.17. Setting MCA parameters and environment variables from file
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
The --tune
command line option and its synonym --mca
mca_base_envar_file_prefix
allows a user to set MCA parameters and
environment variables with the syntax described below. This option
requires a single file or list of files separated by “,” to follow.
A valid line in the file may contain zero or more -x
or
--mca
. The following patterns are supported:
--mca var val
--mca var "val"
-x var=val
-x var
If any argument is duplicated in the file, the last value read will be used.
MCA parameters and environment specified on the command line have higher precedence than variables specified in the file.
17.1.2.6.18. Running as root
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Warning
The Open MPI team strongly advises against executing
mpirun
as the root user. MPI applications should be
run as regular (non-root) users.
mpirun
will refuse to run as root by default.
To override this default, you can add the --allow-run-as-root
option to the mpirun command line, or you can set the environmental
parameters OMPI_ALLOW_RUN_AS_ROOT=1
and
OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1
. Note that it takes setting two
environment variables to effect the same behavior as
--allow-run-as-root
in order to stress the Open MPI team’s strong
advice against running as the root user.
After extended discussions with communities who use containers (where
running as the root user is the default), there was a persistent
desire to be able to enable root execution of mpirun
via an
environmental control (vs. the existing --allow-run-as-root
command line parameter). The compromise of using two environment
variables was reached: it allows root execution via an environmental
control, but it conveys the Open MPI team’s strong recommendation
against this behavior.
17.1.2.6.19. Exit status
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
There is no standard definition for what mpirun
should return as
an exit status. After considerable discussion, we settled on the
following method for assigning the mpirun
exit status (note: in
the following description, the “primary” job is the initial
application started by mpirun — all jobs that are spawned by
that job are designated “secondary” jobs):
If all processes in the primary job normally terminate with exit status 0,
mpirun
returns 0.If one or more processes in the primary job normally terminate with non-zero exit status,
mpirun
returns the exit status of the process with the lowest MPI_COMM_WORLD rank to have a non-zero status.If all processes in the primary job normally terminate with exit status 0, and one or more processes in a secondary job normally terminate with non-zero exit status,
mpirun
:Returns the exit status of the process with the lowest MPI_COMM_WORLD rank in the lowest jobid to have a non-zero status, and
Outputs a message summarizing the exit status of the primary and all secondary jobs.
If the command line option
--report-child-jobs-separately
is set, we will return only the exit status of the primary job. Any non-zero exit status in secondary jobs will be reported solely in a summary print statement.
By default, the job will abort when any process terminates with
non-zero status. The MCA parameter --PRRTEmca state_base_error_non_zero_exit
can be set to “false” (or “0”) to cause Open MPI to not abort a job if
one or more processes return a non-zero status. In that situation the
Open MPI records and notes that processes exited with non-zero
termination status to report the appropriate exit status of mpirun
(per
bullet points above).
17.1.2.7. EXAMPLES
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
Be sure also to see the examples throughout the sections above.
shell$ mpirun -n 4 --mca btl tcp,sm,self prog1
Run 4 copies of prog1
using the tcp
, sm
(shared memory),
and self
(process loopback) BTL’s for the transport of MPI
messages.
17.1.2.8. RETURN VALUE
This is old, hard-coded content
Is this content still current / accurate? Should it be updated and retained, or removed?
mpirun
returns 0 if all processes started by mpirun exit after
calling MPI_FINALIZE(3). A non-zero value is
returned if an internal error occurred in mpirun, or one or more
processes exited before calling MPI_FINALIZE(3).
If an internal error occurred in mpirun, the corresponding error code
is returned. In the event that one or more processes exit before
calling MPI_FINALIZE(3), the return value of
the MPI_COMM_WORLD rank of the process that mpirun first notices died
before calling MPI_FINALIZE(3) will be
returned. Note that, in general, this will be the first process that
died but is not guaranteed to be so.
If the --timeout
command line option is used and the timeout
expires before the job completes (thereby forcing mpirun to kill the
job) mpirun will return an exit status equivalent to the value of
ETIMEDOUT (which is typically 110 on Linux and OS X systems).
See also
MPI_INIT(3), MPI_INIT_THREAD(3), MPI_FINALIZE(3), ompi_info(1)