# Test gamma algebra manipulations. Implicitly tests the combinatorics # module too. def test01(): __cdbkernel__=create_scope() \Gamma_{#}::GammaMatrix(metric=\delta). obj1:= \Gamma^{a b}\Gamma_{c}; join_gamma(obj1) tst1:= \Gamma^{a b}_{c} + \Gamma^{a} \delta^{b}_{c} - \Gamma^{b} \delta^{a}_{c} - @(obj1); collect_terms(tst1) assert(tst1==0) print("Test 01 passed") #test01() # Test of the join functionality which keeps anti-symmetry in certain # indicated indices implicit (obj3a) versus the full thing (obj3b). # # The logic is that if you _know_ that in the final result you are # going to acanonicalorder in a given set of indices that appear # on the gamma matrices that you start with, then you may as well # forget about all explicit anti-symmetrisations in those indices. def test02(): __cdbkernel__=create_scope() \delta_{m n}::KroneckerDelta. \Gamma_{#}::GammaMatrix(metric=\delta). obj3a:= \Gamma_{c d}\Gamma_{m1 m2 m3}\Gamma_{n1 n2}; #test02() def test02b(): __cdbkernel__=create_scope() \bar{#}::DiracBar; \psi::Spinor(dimension=10); \Gamma{#}::GammaMatrix; ex:=\bar{\Gamma^{m n p} \psi}; expand_diracbar(ex) tst:=\bar{\psi} \Gamma^{m n p} - @(ex); assert(tst==0) print("Test 02b passed") #test02b() # {m, n, p, q, r, a, b, c}::Indices(flat, position=free); # {m, n, p, q, r, a, b, c}::Integer(1..10); # \delta_{m n}::KroneckerDelta; # ex:=\delta^{q q}; # eliminate_kronecker(ex); # # {m, n, p, q, r, a, b, c}::Indices(flat, position=fixed); # ex:=\delta_{q r}; # substitute(ex, $\delta^{q r} -> K^{q r}$) # {m, n, p, q, r, a, b, c}::Indices(flat, position=free); # substitute(ex, $\delta^{q r} -> K^{q r}$) # # # # # \delta_{m n}::SelfCommuting; # \delta_{m n}::KroneckerDelta; # {m, n, p, q, r, a, b, c}::Indices(flat, position=free); # {m, n, p, q, r, a, b, c}::Integer(1..10); # # \GAMMA^{#}::GammaMatrix(metric=\delta). # one:= \GAMMA^{m n p q r}\GAMMA^{a}\GAMMA^{b}\GAMMA^{m n p}\GAMMA^{c}\GAMMA^{q r}; # join_gamma(_); # distribute(_); # eliminate_kronecker(_); # canonicalise(_); # sort_product(_); # # join_gamma(_); # distribute(_); # eliminate_kronecker(_); # canonicalise(_); # sort_product(_); # # # \delta_{m n}::KroneckerDelta. # \Gamma_{#}::GammaMatrix(metric=\delta) # ex:=\Gamma_{a b c}\Gamma_{c d}\Gamma_{e}; # join_gamma(ex) # distribute(ex) # sort_product(ex) # join_gamma(ex) # segfault # obj3b:= @(obj3a); # @join!(obj3a){expand}{m1,m2,m3}{n1,n2}; # @distribute!(%); # @prodsort!(%); # @join!(%){expand}{m1,m2,m3}{n1,n2}; # @distribute!(%); # @acanonicalorder!(%){_{m1},_{m2},_{m3}}; # @acanonicalorder!(%){_{n1},_{n2}}; # @canonicalise!(%); # @collect_terms!(%); # # @join!(obj3b){expand}; # @distribute!(%); # @prodsort!(%); # @join!(%){expand}; # @distribute!(%); # @acanonicalorder!(obj3b){_{m1},_{m2},_{m3}}; # @acanonicalorder!(%){_{n1},_{n2}}; # @collect_terms!(%); # # tst3:= @(obj3a)-@(obj3b); # @canonicalise!(%); # @collect_terms!(%); # @assert(tst3); # # # Another one, weird. # \Gamma_{m1 m2 m3 r1 r2 r3 r4 l} * \Gamma_{n1 n2 n3}; # @join!(%){5}{expand}{n1,n2,n3}; # # \Gamma_{m1 m2 m3 r1 r2 r3 r4 l} * \Gamma_{n1 n2 n3}; # @join!(%){5}{expand}; # # # # # This is one from the Abra help document. Much nicer now in # Cadabra 2.x. def test03(): __cdbkernel__ = create_scope() \delta{#}::KroneckerDelta. {m, n, p, q, r, a, b, c}::Indices(flat). {m, n, p, q, r, a, b, c}::Integer(1..10). \GAMMA{#}::GammaMatrix(metric=\delta). def post_process(ex): distribute(ex) eliminate_kronecker(ex) sort_product(ex) canonicalise(ex) collect_terms(ex) one:= \GAMMA^{m n p q r}\GAMMA^{a}\GAMMA^{b}\GAMMA^{m n p}\GAMMA^{c}\GAMMA^{q r}; for i in range(5): join_gamma(one) tst:=- 2016 * \GAMMA^{a b c} - 2016 * \GAMMA^{a} * \delta^{b c} + 2016 * \GAMMA^{b} * \delta^{a c} + 18144 * \GAMMA^{c} * \delta^{a b} - @(one); assert(tst==0) print("Test 03a passed") two:= \GAMMA^{a}*@(one); join_gamma(two) assert(two==0) print("Test 03b passed") test03() # # # # Test 5:= brackets # # # @reset. # \Gamma_{#}::GammaMatrix(metric=\delta). # obj5:= (\Gamma_r \Gamma_s); # @join!(%); # tst5:= (\Gamma_{r s} + \delta_{r s}) - @(obj5); # @sumflatten!(%); # @collect_terms!(%); # @assert(tst5); # # # Test 6:= taking care of dimensions # # # @reset; # \Gamma_{#}::GammaMatrix(metric=\delta). # {m,n,p,q,r,s,t}::Integer(0..3); # obj6:= \Gamma_{m n p} \Gamma_{q r}; # @join!(%); # tst6:= 6 * \Gamma_{m n r} * \delta_{p q} # + 6 * \Gamma_{m} * \delta_{p q} * \delta_{n r} - @(obj6); # @collect_terms!(%); # @assert(tst6); # # # # Test 7:= back and front-split # # # @reset; # \Gamma_{#}::GammaMatrix(metric=\delta). # obj7:= \Gamma_{m n p q}; # @gammasplit(%); # @join!(%){expand}; # @collect_terms!(%); # tst7:= \Gamma_{m n p q} - @(obj7); # @collect_terms!(%); # @assert(tst7); # # @reset; # \Gamma_{#}::GammaMatrix(metric=\delta). # obj8:= \Gamma_{m n p q}; # @gammasplit(%){front}; # @join!(%){expand}; # @collect_terms!(%); # tst8:= \Gamma_{m n p q} - @(obj8); # @collect_terms!(%); # @assert(tst8); # # # @reset; # \delta_{m n}::KroneckerDelta. # \Gamma_{#}::GammaMatrix(metric=\delta). # \psi_{m}::GammaTraceless. # \psi_{m}::Spinor. # obj9:= T_{a b} * ( A_{m n} \Gamma_{r s p t u v} \psi_{p} B_{q r} # + A_{m n} \psi_{p} \Gamma_{r s p t u v} B_{q r} ); # @remove_gamma_trace!(%); # @distribute!(%); # @prodsort!(%); # tst9:= - A_{m n} * B_{q r} * T_{a b} * \Gamma_{r s t u} * \psi_{v} # + A_{m n} * B_{q r} * T_{a b} * \Gamma_{r s t v} * \psi_{u} # - A_{m n} * B_{q r} * T_{a b} * \Gamma_{r s u v} * \psi_{t} # + A_{m n} * B_{q r} * T_{a b} * \Gamma_{r t u v} * \psi_{s} # - A_{m n} * B_{q r} * T_{a b} * \Gamma_{s t u v} * \psi_{r} # - A_{m n} * B_{q r} * T_{a b} * \psi_{r} * \Gamma_{s t u v} # + A_{m n} * B_{q r} * T_{a b} * \psi_{v} * \Gamma_{s t u r} # - A_{m n} * B_{q r} * T_{a b} * \psi_{u} * \Gamma_{s t v r} # + A_{m n} * B_{q r} * T_{a b} * \psi_{t} * \Gamma_{s u v r} # - A_{m n} * B_{q r} * T_{a b} * \psi_{s} * \Gamma_{t u v r} # - @(obj9); # @collect_terms!(%); # @assert(tst9); # # # Test 10: Silly trivialities # @reset. # {m,n,p,q,r,s,t,m#}::Indices(flat). # {m,n,p,q,r,s,t,m#}::Integer(0..3). # \Gamma_{#{m}}::GammaMatrix(metric=\delta). # \delta_{m n}::KroneckerDelta. # \epsilon_{m n p q}::AntiSymmetric. # obj10:= \epsilon_{m n p q} \Gamma_{m n p q} \Gamma_{r} \Gamma_{s t} \Gamma_{r}; # @join!(%){expand}; # @distribute!(%); # @eliminate_kr!(%); # @canonicalise!(%); # @rename_dummies!(%); # @collect_terms!(%); # # @join!(%){expand}{m,n,p,q}; # @distribute!(%); # @eliminate_kr!(%); # @canonicalise!(%); # @rename_dummies!(%); # @collect_terms!(%); # # @join!(%){expand}; # @distribute!(%); # @eliminate_kr!(%); # @canonicalise!(%); # @rename_dummies!(%); # @collect_terms!(%); # # This one is a Schouten identity, so: # @decompose_product!(%); # @collect_terms!(%): # @canonicalise!(%); # @collect_terms!(%); # @assert(obj10); # # \epsilon_{m n p q}::AntiSymmetric. # @asym[\epsilon_{s m n p} Q_{t}]{_{s},_{t},_{m},_{n},_{p}}; # # obj10b:= \epsilon_{m n p q} G_{m n p q} \Gamma_{r} \Gamma_{s t} \Gamma_{r}; # @join!(%){expand}; # @distribute!(%); # @eliminate_kr!(%); # @canonicalise!(%); # @rename_dummies!(%); # @collect_terms!(%); # # @join!(%){expand}{m,n,p,q}; # @distribute!(%); # @eliminate_kr!(%); # @canonicalise!(%); # @rename_dummies!(%); # @collect_terms!(%); # @assert(obj10b); # # Numerical indices def test03(): __cdbkernel__ = create_scope() \delta{#}::KroneckerDelta. \gamma{#}::GammaMatrix(metric=\delta). obj3:= \gamma_{1 2}\gamma_{1 2}; join_gamma(_); tst3:= \gamma_{1 2 1 2} + \gamma_{1 2} * \delta_{1 2} - \gamma_{1 1} * \delta_{2 2} - \gamma_{2 2} * \delta_{1 1} + \gamma_{2 1} * \delta_{1 2} + \delta_{1 2} * \delta_{1 2} - \delta_{1 1} * \delta_{2 2} - @(obj3); display(tst3) assert(tst3==0) print("Test 03 passed") test03() # # Test 4: keeping upper and lower indices # # # @reset. # {\mu,\nu,\rho,a,b,c,d}::Indices(vector, position=fixed). # {\mu,\nu,\rho,a,b,c,d}::Integer(0..10). # \Gamma{#}::GammaMatrix(metric=g). # obj4:= \Gamma_{\mu c d} \Gamma^{\nu \rho a b c}; # @join!(%){expand}; # # # Indices and sub-indices (bug reported 5-Apr-2009) def test04(): __cdbkernel__ = create_scope() {a,b,c,d, e,f, g, h#}::Indices(group). {M, N, P, Q#}::Indices(flat). {M, N, P, Q#}::Integer(1..10). {I,J,K,L#}::Indices(orthogonal, parent=flat). {I,J,K,L#}::Integer(3..10). {\mu, \nu, \lambda, \sigma#}::Indices(worldvolume, parent=flat). {\mu, \nu, \lambda, \sigma#}::Integer(0..2). \delta{\mu \nu}::KroneckerDelta. \Gamma{#}::GammaMatrix(metric=\delta). obj1:=\Gamma_{I J K}\Gamma_{\mu}; join_gamma(_) tst1:= \Gamma_{I J K \mu} + \Gamma_{I J} * \delta_{K \mu} - \Gamma_{I K} * \delta_{J \mu} + \Gamma_{J K} * \delta_{I \mu} - @(obj1); assert(tst1==0) print("Test 04a passed") obj2:=\Gamma_{\mu}\Gamma_{I J K}; join_gamma(_) tst2:= \Gamma_{\mu I J K} + \Gamma_{J K} * \delta_{I \mu} - \Gamma_{J I} * \delta_{K \mu} + \Gamma_{K I} * \delta_{J \mu} - @(obj2); assert(tst2==0) print("Test 04b passed") test04() # # # Test 5: multiple spinor lines # # # @reset. # \gamma{#}::GammaMatrix(spacetime). # \Gamma{#}::GammaMatrix(susy). # {\psi,\lambda}::Spinor(spacetime, susy). # obj5:= \psi \gamma \Gamma \lambda; # @prodsort!(%); # def test05(): def post_process(ex): sort_product(ex) eliminate_kronecker(ex) canonicalise(ex) collect_terms(ex) {\mu, \nu, \rho, \sigma}::Indices(vector, position=fixed); {m, n, p, q}::Indices(vector,position=fixed); \partial{#}::PartialDerivative; {\psi, \theta}::Spinor(dimension=10, type=MajoranaWeyl); {\psi, \theta}::AntiCommuting; \bar{#}::DiracBar; \Gamma{#}::GammaMatrix(metric=\eta); ex:=\bar{\Gamma^{\mu}\Gamma_{\nu}\theta} \partial_{\rho}{X^{\nu}}; join_gamma(ex); canonicalise(ex); test05() def test06(): __cdbkernel__ = create_scope() {a,b,c}::Indices(flat). \gamma{#}::GammaMatrix(metric=g). ex := \gamma_{m m} \gamma_{n}; join_gamma(ex); tst:= assert(ex==0) print("Test 06 passed") test06() # {\mu,\nu}::Indices(curved). # {a,b,c}::Indices(flat). # \gamma{#}::GammaMatrix(metric=g). # ex := \gamma_{\mu} \gamma_{a}; # ex2:= \gamma_{a}\gamma_{\mu}\gamma_{\nu}\gamma_{b}; # join_gamma(_); # ex := \gamma_{a} \gamma_{b}; # join_gamma(_); # # {\alpha,\beta}::Indices(position=fixed); # \gamma{#}::Matrix; # \lambda::ImplicitIndex; # ex:=\lambda^{\alpha} (\gamma^{m})_{\alpha \beta}; # combine(ex);