/* Cadabra: a field-theory motivated computer algebra system. Copyright (C) 2001-2015 Kasper Peeters This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "Algorithm.hh" #include "Storage.hh" #include "Props.hh" #include "Cleanup.hh" #include #include #if BOOST_VERSION > 105500 #include #endif //#include #include "properties/Accent.hh" #include "properties/Derivative.hh" #include "properties/Indices.hh" #include "properties/Coordinate.hh" #include "properties/Symbol.hh" #include "properties/Trace.hh" #include "properties/DependsBase.hh" #include //#define DEBUG using namespace cadabra; Algorithm::Algorithm(const Kernel& k, Ex& tr_) : IndexClassifier(k), interrupted(false), number_of_calls(0), number_of_modifications(0), suppress_normal_output(false), discard_command_node(false), tr(tr_), pm(0), traverse_ldots(false) { } Algorithm::~Algorithm() { } void Algorithm::set_progress_monitor(ProgressMonitor *pm_) { pm=pm_; } Algorithm::result_t Algorithm::apply_pre_order(bool repeat) { #if BOOST_VERSION > 105500 ScopedProgressGroup(pm, boost::core::demangle(typeid(*this).name())); #else ScopedProgressGroup(typeid(*this).name()); #endif result_t ret=result_t::l_no_action; Ex::iterator start=tr.begin(); while(start!=tr.end()) { if(traverse_ldots || !tr.is_hidden(start)) { if(start->is_index()==false) { auto aor=apply_once(start); if(aor==result_t::l_applied || aor==result_t::l_applied_no_new_dummies) { ret=result_t::l_applied; // Need to cleanup on the entire tree above us. if(!repeat) { start.skip_children(); ++start; } } else ++start; } else ++start; } else { ++start; } } cleanup_dispatch_deep(kernel, tr); return ret; } Algorithm::result_t Algorithm::apply_generic(bool deep, bool repeat, unsigned int depth) { auto it = tr.begin(); return apply_generic(it, deep, repeat, depth); } Algorithm::result_t Algorithm::apply_generic(Ex::iterator& it, bool deep, bool repeat, unsigned int depth) { #if BOOST_VERSION > 105500 ScopedProgressGroup(pm, boost::core::demangle(typeid(*this).name())); #else ScopedProgressGroup(typeid(*this).name()); #endif result_t ret=result_t::l_no_action; Ex::fixed_depth_iterator start=tr.begin_fixed(it, depth, false); #ifdef DEBUG std::cerr << "apply_generic at " << it.node << " " << *it->name << " " << *start->name << std::endl; #endif while(tr.is_valid(start)) { // std::cerr << "evaluate main loop at " << *start->name << std::endl; #ifdef DEBUG std::cerr << "main loop for " << typeid(*this).name() << ":\n" << Ex(start) << std::endl; #endif result_t thisret=result_t::l_no_action; Ex::iterator enter(start); Ex::fixed_depth_iterator next(start); ++next; // if(tr.is_valid(next)) // std::cerr << "next = " << *next->name << std::endl; do { // std::cout << "apply at " << *enter->name << std::endl; bool work_is_topnode=(enter==it); if(deep && depth==0) thisret = apply_deep(enter); else thisret = apply_once(enter); if(work_is_topnode) it=enter; // FIXME: handle l_error or remove if(thisret==result_t::l_applied || thisret==result_t::l_applied_no_new_dummies) ret=result_t::l_applied; } while(depth==0 && repeat && (thisret==result_t::l_applied || thisret==result_t::l_applied_no_new_dummies)); if(depth==0) { // std::cerr << "break " << std::endl; break; } else { // std::cerr << "no break " << std::endl; } start=next; } // std::cerr << "pre-exit node " << it.node << std::endl; // If we are acting at fixed depth, we will not have gone up in the // tree, so missed one cleanup action. Do it now. if(depth>0) { Ex::fixed_depth_iterator start=tr.begin_fixed(it, depth-1, false); while(tr.is_valid(start)) { Ex::iterator work=start; ++start; bool cpy=false; if(work==it) cpy=true; cleanup_dispatch(kernel, tr, work); if(cpy) it=work; } } // std::cerr << "exit node " << it.node << std::endl; // if(tr.is_valid(it)) { // std::cerr << "exit " << *it->name << std::endl; // std::cerr << "exit apply_generic\n" << Ex(it) << std::endl; // } return ret; } Algorithm::result_t Algorithm::apply_once(Ex::iterator& it) { // std::cerr << "=== apply_once ===" << std::endl; if(traverse_ldots || !tr.is_hidden(it)) { if(can_apply(it)) { result_t res=apply(it); // std::cerr << "apply algorithm at " << *it->name << std::endl; if(res==result_t::l_applied || res==result_t::l_applied_no_new_dummies) { cleanup_dispatch(kernel, tr, it); return res; } } } return result_t::l_no_action; } Algorithm::result_t Algorithm::apply_deep(Ex::iterator& it) { // This recursive algorithm walks the tree depth-first // (parent-after-child). The algorithm is applied on each node if // can_apply returns true. When the iterator goes up one level // (i.e. from a child to a parent), and any changes have been made // so far at the child level level, cleanup and simplification // routines will be called. The only nodes that can be removed from // the tree are nodes at a lower level than the simplification // node. // std::cout << "=== apply_deep ===" << std::endl; // tr.print_recursive_treeform(std::cout, it); post_order_iterator current=it; current.descend_all(); post_order_iterator last=it; int deepest_action = -1; // std::cout << "apply_deep: it = " << *it->name << std::endl; bool stop_after_this_one=false; result_t some_changes_somewhere=result_t::l_no_action; for(;;) { // std::cout << "reached " << *current->name << std::endl; #ifdef DEBUG std::cout << "apply_deep " << typeid(*this).name() << ": current = " << *current->name << std::endl; #endif if(current.node==last.node) { // std::cout << "stop after this one" << std::endl; stop_after_this_one=true; } if(deepest_action > tr.depth(current)) { #ifdef DEBUG std::cerr << "simplify; we are at " << *(current->name) << std::endl; #endif iterator work=current; bool work_is_topnode=(work==it); cleanup_dispatch(kernel, tr, work); current=work; if(work_is_topnode) it=work; #ifdef DEBUG std::cerr << "current now " << *(current->name) << std::endl; tr.print_recursive_treeform(std::cerr, current); #endif deepest_action = tr.depth(current); // needs to propagate upwards } if((traverse_ldots || !tr.is_hidden(current)) && can_apply(current)) { #ifdef DEBUG std::cout << "acting at " << *current->name << std::endl; #endif iterator work=current; post_order_iterator next(current); ++next; bool work_is_topnode=(work==it); result_t res = apply(work); if(res==Algorithm::result_t::l_applied || res==Algorithm::result_t::l_applied_no_new_dummies) { some_changes_somewhere=result_t::l_applied; if(res==Algorithm::result_t::l_applied) { // std::cerr << "rename replacement on " << work << std::endl; rename_replacement_dummies(work, true); } deepest_action=tr.depth(work); // If we got a zero at 'work', we need to propagate this up the tree and // then restart our post-order traversal such that everything that has // been removed from the tree by this zero will no longer be considered. if(*work->multiplier==0) { #ifdef DEBUG std::cerr << "propagate zero up the tree" << std::endl; tr.print_recursive_treeform(std::cerr, it); #endif post_order_iterator moved_next=work; propagate_zeroes(moved_next, it); #ifdef DEBUG tr.print_recursive_treeform(std::cerr, it); std::cerr << Ex(it) << std::endl; #endif next=moved_next; } // The 'work' iterator can now point to a new node. If we were acting at the // top node, we need to propagate the change in 'work' to 'it' so the caller // knows where the new top node is. if(work_is_topnode) it=work; } // The algorithm may have replaced the 'work' node, so instead of walking from // there, we continue at the node which was next in line before we called 'apply'. current=next; } else { ++current; } if(stop_after_this_one) break; } #ifdef DEBUG std::cerr << "recursive end **" << std::endl; #endif return some_changes_somewhere; } void Algorithm::propagate_zeroes(post_order_iterator& it, const iterator& topnode) { assert(*it->multiplier==0); if(it==topnode) return; if(tr.is_head(it)) return; iterator walk=tr.parent(it); #ifdef DEBUG std::cerr << "propagate_zeroes at " << *walk->name << std::endl; #endif // if(!tr.is_valid(walk)) // return; const Derivative *der=kernel.properties.get(walk); const Trace *trace=kernel.properties.get(walk); if(*walk->name=="\\prod" || der || trace) { if(der && it->is_index()) return; walk->multiplier=rat_set.insert(0).first; it=walk; propagate_zeroes(it, topnode); // Removing happens in the next step. } else if(*walk->name=="\\pow") { if(tr.index(it)==0) { // the argument walk->multiplier=rat_set.insert(0).first; it=walk; propagate_zeroes(it, topnode); } else { // the exponent rset_t::iterator rem=walk->multiplier; tr.erase(it); tr.flatten(walk); it=tr.erase(walk); node_one(it); it->multiplier=rem; } } else if(*walk->name=="\\sum") { if(tr.number_of_children(walk)>2) { if(tr.is_valid(tr.next_sibling(it))) { it=tr.erase(it); it.descend_all(); } else { iterator ret=tr.parent(it); tr.erase(it); it=ret; } } else { // If the sum is the top node, we cannot flatten it because // we are not allowed to invalidate the topnode iterator if(walk==topnode) { #ifdef DEBUG std::cerr << "\\sum at top, cannot flatten" << std::endl; #endif // it=tr.next_sibling(it); // Added but wrong? return; } tr.erase(it); iterator singlearg=tr.begin(walk); if(singlearg!=tr.end(walk)) { singlearg->fl.bracket=walk->fl.bracket; // to remove brackets of the sum if(*tr.parent(walk)->name=="\\prod") { multiply(tr.parent(walk)->multiplier, *singlearg->multiplier); cadabra::one(singlearg->multiplier); } } tr.flatten(walk); it=tr.erase(walk); if(*it->name=="\\prod" && *tr.parent(it)->name=="\\prod") { tr.flatten(it); it=tr.erase(it); } } } else { iterator nn=tr.insert_after(it, str_node("1")); nn->fl.parent_rel=it->fl.parent_rel; nn->fl.bracket=it->fl.bracket; it=tr.erase(it); zero(it->multiplier); } return; } void Algorithm::pushup_multiplier(iterator it) { if(!tr.is_valid(it)) return; if(*it->multiplier!=1) { if(*it->name=="\\sum") { // txtout << "SUM" << std::endl; sibling_iterator sib=tr.begin(it); while(sib!=tr.end(it)) { multiply(sib->multiplier, *it->multiplier); // txtout << "going up" << std::endl; if(tr.is_head(it)==false) pushup_multiplier(tr.parent(it)); // txtout << "back and back up" << std::endl; pushup_multiplier(sib); // txtout << "back" << std::endl; ++sib; } ::one(it->multiplier); } else { // txtout << "PUSHUP: " << *it->name << std::endl; if(tr.is_head(it)==false) { // txtout << "test propinherit" << std::endl; // iterator tmp=tr.parent(it); // tmp not always valid?!? This one crashes hard with a loop!?! // txtout << " of " << *tmp->name << std::endl; const PropertyInherit *pin=kernel.properties.get(tr.parent(it)); if(pin || *(tr.parent(it)->name)=="\\prod") { multiply(tr.parent(it)->multiplier, *it->multiplier); ::one(it->multiplier); // moved up, was at end of block, correct? // txtout << "going up" << std::endl; pushup_multiplier(tr.parent(it)); // txtout << "back" << std::endl; } // else txtout << "not relevant" << std::endl; } } } } void Algorithm::node_zero(iterator it) { ::zero(it->multiplier); tr.erase_children(it); it->name=name_set.insert("1").first; } void Algorithm::node_one(iterator it) { ::one(it->multiplier); tr.erase_children(it); it->name=name_set.insert("1").first; } void Algorithm::node_integer(iterator it, int num) { ::one(it->multiplier); tr.erase_children(it); it->name=name_set.insert("1").first; ::multiply(it->multiplier, num); } int Algorithm::index_parity(iterator it) const { sibling_iterator frst=tr.begin(tr.parent(it)); sibling_iterator fnd(it); int sgn=1; while(frst!=fnd) { sgn=-sgn; ++frst; } return sgn; } unsigned int Algorithm::number_of_indices(iterator it) { unsigned int res=0; index_iterator indit=begin_index(it); while(indit!=end_index(it)) { ++res; ++indit; } return res; } std::string Algorithm::get_index_set_name(iterator it) const { const Indices *ind=kernel.properties.get(it, true); if(ind) { return ind->set_name; // TODO: The logic was once as below, but it is no longer clear to // me why that would ever make sense. // if(ind->parent_name!="") return ind->parent_name; // else return ind->set_name; } else return " undeclared"; } index_iterator Algorithm::begin_index(iterator it) const { return index_iterator::begin(kernel.properties, it); } index_iterator Algorithm::end_index(iterator it) const { return index_iterator::end(kernel.properties, it); } bool Algorithm::check_index_consistency(iterator it) const { index_map_t ind_free, ind_dummy; classify_indices(it,ind_free,ind_dummy); return true; } bool Algorithm::check_degree_consistency(iterator ) const { return true; // FIXME: this needs to be implemented. } bool Algorithm::check_consistency(iterator it) const { Stopwatch w1; w1.start(); // debugout << "checking consistency ... " << std::flush; assert(tr.is_head(it)==false); // iterator entry=it; iterator end=it; end.skip_children(); ++end; while(it!=end) { if(interrupted) throw InterruptionException("check_consistency"); if(*it->name=="\\sum") { if(*it->multiplier!=1) throw ConsistencyException("Found \\sum node with non-unit multiplier."); else if(Ex::number_of_children(it)<2) throw ConsistencyException("Found a \\sum node with 0 or 1 child nodes."); else { sibling_iterator sumch=it.begin(); str_node::bracket_t firstbracket=sumch->fl.bracket; while(*sumch->name=="\\sum" || *sumch->name=="\\prod") { ++sumch; if(sumch==it.end()) break; else firstbracket=sumch->fl.bracket; } sumch=it.begin(); while(sumch!=it.end()) { if(*sumch->name!="\\sum" && *sumch->name!="\\prod") { if(sumch->fl.bracket!=firstbracket) throw ConsistencyException("Found a \\sum node with different brackets on its children."); } // else if(*sumch->name=="\\sum") { // sibling_iterator sumchch=sumch.begin(); // while(sumchch!=sumch.end()) { // if(sumchch->fl.bracket==str_node::b_none) { // tr.print_recursive_treeform(debugout, entry); // throw ConsistencyException("Found a sum node with \\sum child without bracketed children."); // } // ++sumchch; // } // } ++sumch; } } } else if(*it->name=="\\prod") { if(Ex::number_of_children(it)<=1) throw ConsistencyException("Found \\prod node with only 0 or 1 children."); sibling_iterator ch=it.begin(); str_node::bracket_t firstbracket=ch->fl.bracket; while(*ch->name=="\\sum" || *ch->name=="\\prod") { ++ch; if(ch==it.end()) break; else firstbracket=ch->fl.bracket; } ch=it.begin(); while(ch!=it.end()) { if(*ch->name!="\\prod" && *ch->name!="\\sum") { if(ch->fl.bracket!=firstbracket) throw ConsistencyException("Found \\prod node with different brackets on its children."); } if(*ch->multiplier!=1) { throw ConsistencyException("Found \\prod child with non-unit multiplier."); // debugout << "node name " << *ch->name << ", multiplier " << *ch->multiplier << std::endl; // inconsistent=true; // break; } ++ch; } } else if(*it->name=="\\sequence") { if(Ex::number_of_children(it)!=2) throw ConsistencyException("Found \\sequence node with incorrect (non-2) number of children."); } ++it; } w1.stop(); // debugout << "checking done..." << w1 << std::endl; return true; } void Algorithm::report_progress(const std::string&, int, int, int count) { // bool display=false; // if(count==2) display=true; // else { // if(report_progress_stopwatch.stopped()) { // display=true; // report_progress_stopwatch.start(); // } // else { // if(report_progress_stopwatch.seconds()>0 || report_progress_stopwatch.useconds()>300000L) { // display=true; // report_progress_stopwatch.reset(); // } // } // } // if(display) { // prevents updates at a rate of more than one per second // if(eo->output_format==Ex_output::out_xcadabra) { // txtout << "" << std::endl // << str << std::endl // << todo << std::endl // << done << std::endl // << count << std::endl // << "" << std::endl; // } // else { // if(count==2) // txtout << str << " (" << done << " of " << todo << " completed)" << std::endl; // } // } } bool Algorithm::rename_replacement_dummies(iterator two, bool still_inside_algo) { #ifdef DEBUG std::cerr << "renaming in " << two << std::endl; #endif // std::cout << "full story " << *two->name << std::endl; // print_classify_indices(two); // std::cout << "replacement" << std::endl; // print_classify_indices(std::cout, two); index_map_t ind_free, ind_dummy; index_map_t ind_free_full, ind_dummy_full; if(false && still_inside_algo) { if(tr.is_head(two)==false) classify_indices_up(tr.parent(two), ind_free_full, ind_dummy_full); } else { classify_indices_up(two, ind_free_full, ind_dummy_full); // the indices in everything except the replacement } classify_indices(two, ind_free, ind_dummy); // the indices in the replacement subtree #ifdef DEBUG std::cerr << "dummies of " << *two->name << std::endl; for(auto& ii: ind_dummy) std::cerr << ii.first << std::endl; std::cerr << "free indices above us" << std::endl; for(auto& ii: ind_free_full) std::cerr << ii.first << std::endl; std::cerr << "dummy indices above us" << std::endl; for(auto& ii: ind_dummy_full) std::cerr << ii.first << std::endl; #endif index_map_t must_be_empty; index_map_t newly_generated; // Catch double index pairs determine_intersection(ind_dummy_full, ind_dummy, must_be_empty); index_map_t::iterator it=must_be_empty.begin(); while(it!=must_be_empty.end()) { #ifdef DEBUG std::cerr << "double index pair" << std::endl; #endif Ex the_key=(*it).first; const Indices *dums=kernel.properties.get(it->second, true); if(!dums) throw ConsistencyException("Failed to find dummy property for $"+*it->second->name+"$ while renaming dummies."); // txtout << "failed to find dummy property for " << *it->second->name << std::endl; assert(dums); Ex relabel =get_dummy(dums, &ind_dummy_full, &ind_dummy, &ind_free_full, &ind_free, &newly_generated); newly_generated.insert(index_map_t::value_type(Ex(relabel),(*it).second)); // txtout << " renamed to " << *relabel << std::endl; do { tr.replace_index((*it).second, relabel.begin(), true); // (*it).second->name=relabel; ++it; } while(it!=must_be_empty.end() && tree_exact_equal(&kernel.properties, (*it).first,the_key, 1, true, -2, true)); } // Catch triple indices (two cases: dummy pair in replacement, free index elsewhere and // dummy elsewhere, free index in replacement) must_be_empty.clear(); // newly_generated.clear(); // DO NOT ERASE, IDIOT! determine_intersection(ind_free_full, ind_dummy, must_be_empty); //for(auto& ii: must_be_empty) { // std::cerr << ii.first << std::endl; // } it=must_be_empty.begin(); while(it!=must_be_empty.end()) { //std::cerr << "triple index pair " << it->first << std::endl; Ex the_key=(*it).first; const Indices *dums=kernel.properties.get(it->second, true); if(!dums) throw ConsistencyException("Failed to find dummy property for $"+*it->second->name+"$ while renaming dummies."); assert(dums); Ex relabel =get_dummy(dums, &ind_dummy_full, &ind_dummy, &ind_free_full, &ind_free, &newly_generated); relabel.begin()->fl.parent_rel=it->second->fl.parent_rel; newly_generated.insert(index_map_t::value_type(relabel,(*it).second)); do { tr.replace_index((*it).second, relabel.begin(), true); ++it; } while(it!=must_be_empty.end() && tree_exact_equal(&kernel.properties, (*it).first,the_key, 1, true, -2, true)); } must_be_empty.clear(); // newly_generated.clear(); determine_intersection(ind_free, ind_dummy_full, must_be_empty); it=must_be_empty.begin(); while(it!=must_be_empty.end()) { // std::cerr << "triple index pair 2" << std::endl; Ex the_key=(*it).first; const Indices *dums=kernel.properties.get(it->second, true); if(!dums) throw ConsistencyException("Failed to find dummy property for $"+*it->second->name+"$ while renaming dummies."); assert(dums); Ex relabel =get_dummy(dums, &ind_dummy_full, &ind_dummy, &ind_free_full, &ind_free, &newly_generated); relabel.begin()->fl.parent_rel=it->second->fl.parent_rel; newly_generated.insert(index_map_t::value_type(relabel,(*it).second)); do { tr.replace_index((*it).second, relabel.begin(), true); ++it; } while(it!=must_be_empty.end() && tree_exact_equal(&kernel.properties, (*it).first,the_key, 1, true, -2, true)); } return true; } bool Algorithm::contains(sibling_iterator from, sibling_iterator to, sibling_iterator arg) { while(from!=to) { if(from->name==arg->name) return true; ++from; } return false; } Algorithm::range_vector_t::iterator Algorithm::find_arg_superset(range_vector_t& ran, sibling_iterator it) { sibling_iterator nxt=it; ++nxt; return find_arg_superset(ran, it, nxt); } //void Algorithm::find_argument_lists(range_vector_t& ran, bool only_comma_lists) const // { // sibling_iterator argit=args_begin(); // while(argit!=args_end()) { // if(*argit->name=="\\comma") { // ran.push_back(range_t(tr.begin(argit), tr.end(argit))); // } // else if(!only_comma_lists) { // sibling_iterator argnxt=argit; ++argnxt; // ran.push_back(range_t(argit, argnxt)); // } // ++argit; // } // } template Algorithm::range_vector_t::iterator Algorithm::find_arg_superset(range_vector_t& ran, Iter st, Iter nd) { range_vector_t::iterator ranit=ran.begin(); while(ranit!=ran.end()) { sibling_iterator findthese=st; bool contained=true; while(findthese!=nd) { if(contains((*ranit).first, (*ranit).second, findthese)) { ++findthese; } else { contained=false; break; } } if(contained) return ranit; ++ranit; } return ran.end(); } bool Algorithm::is_termlike(iterator it) { if(*it->name=="\\equals") return false; if(!is_factorlike(it)) if(*it->name!="\\sum") if(it->fl.parent_rel==str_node::p_none) return true; return false; } bool Algorithm::is_factorlike(iterator it) { if(Ex::is_head(it)) return false; if(*Ex::parent(it)->name=="\\prod") return true; return false; } // This only returns true if the indicated node is a single non-reserved node (non-prod, non-sum, ...) // at the top level of an expression (real top, top of equation lhs/rhs, top of integral argument, ...). bool Algorithm::is_single_term(iterator it) { if(*it->name!="\\prod" && *it->name!="\\sum" && *it->name!="\\asymimplicit" && *it->name!="\\comma" && *it->name!="\\equals" && *it->name!="\\arrow") { if(tr.is_head(it) || *tr.parent(it)->name=="\\equals" || *tr.parent(it)->name=="\\int") return true; else if(*tr.parent(it)->name=="\\sum") return true; else if(*tr.parent(it)->name!="\\prod" && it->fl.parent_rel==str_node::parent_rel_t::p_none && kernel.properties.get(tr.parent(it))==0 ) { #ifdef DEBUG std::cerr << "Found single term in " << tr.parent(it) << std::endl; #endif return true; } } return false; } bool Algorithm::is_nonprod_factor_in_prod(iterator it) { if(*it->name!="\\prod" && *it->name!="\\sum" && *it->name!="\\asymimplicit" && *it->name!="\\comma" && *it->name!="\\equals") { try { if(tr.is_head(it)==false && *tr.parent(it)->name=="\\prod") return true; } catch(navigation_error& ex) { // no parent, ignore } // else return true; } return false; } bool Algorithm::prod_wrap_single_term(iterator& it) { if(is_single_term(it)) { force_node_wrap(it, "\\prod"); return true; } else return false; } bool Algorithm::sum_wrap_single_term(iterator& it) { if(is_single_term(it)) { force_node_wrap(it, "\\sum"); return true; } else return false; } void Algorithm::force_node_wrap(iterator& it, std::string nm) { iterator prodnode=tr.insert(it, str_node(nm)); sibling_iterator fr=it, to=it; ++to; tr.reparent(prodnode, fr, to); prodnode->fl.bracket=it->fl.bracket; it->fl.bracket=str_node::b_none; if(nm!="\\sum") { // multipliers should sit on terms in a sum prodnode->multiplier=it->multiplier; one(it->multiplier); } it=prodnode; } bool Algorithm::prod_unwrap_single_term(iterator& it) { if((*it->name)=="\\prod") { if(tr.number_of_children(it)==1) { multiply(tr.begin(it)->multiplier, *it->multiplier); tr.begin(it)->fl.bracket=it->fl.bracket; tr.begin(it)->multiplier=it->multiplier; tr.flatten(it); it=tr.erase(it); return true; } } return false; } bool Algorithm::sum_unwrap_single_term(iterator& it) { if((*it->name)=="\\sum") { if(tr.number_of_children(it)==1) { multiply(tr.begin(it)->multiplier, *it->multiplier); tr.begin(it)->fl.bracket=it->fl.bracket; tr.begin(it)->multiplier=it->multiplier; tr.flatten(it); it=tr.erase(it); return true; } } return false; } bool Algorithm::separated_by_derivative(iterator i1, iterator i2, iterator check_dependence) const { iterator lca = tr.lowest_common_ancestor(i1, i2); // Walk up the tree from the first node until the LCA, flag any derivatives // with which we do not commute. struct { bool operator()(const Kernel& kernel, Ex& tr, iterator walk, iterator lca, iterator check_dependence) { const Properties& pr=kernel.properties; do { walk=Ex::parent(walk); if(walk == lca) break; const Derivative *der=pr.get(walk); if(der) { if(tr.is_valid(check_dependence) ) { const DependsBase *dep = pr.get(check_dependence); if(dep) { Ex deps=dep->dependencies(kernel, check_dependence); sibling_iterator depobjs=deps.begin(deps.begin()); while(depobjs!=deps.end(deps.begin())) { if(walk->name == depobjs->name) { return true; } else { // compare all indices sibling_iterator indit=tr.begin(walk); while(indit!=tr.end(walk)) { if(indit->is_index()) { if(subtree_exact_equal(&pr, indit, depobjs)) return true; } ++indit; } } ++depobjs; } return false; // Dependence found but not relevant here. } else return false; // No dependence property found at all. } else return true; // Should not check for dependence. } } while(walk != lca); return false; } } one_run; if(one_run(kernel, tr, i1, lca, check_dependence)) return true; if(one_run(kernel, tr, i2, lca, check_dependence)) return true; return false; } // bool Algorithm::cleanup_anomalous_products(Ex& tr, Ex::iterator& it) // { // if(*(it->name)=="\\prod") { // if(tr.number_of_children(it)==0) { // it->name=name_set.insert("1").first; // return true; // } // else if(tr.number_of_children(it)==1) { // tr.begin(it)->fl.bracket=it->fl.bracket; // tr.begin(it)->multiplier=it->multiplier; // tr.flatten(it); // Ex::iterator tmp=tr.erase(it); // // txtout << "HERRE?" << std::endl; // pushup_multiplier(tmp); // it=tmp; // return true; // } // } // return false; // } // unsigned int Algorithm::locate_single_object(Ex::iterator obj_to_find, Ex::iterator st, Ex::iterator nd, std::vector& store) { unsigned int count=0; unsigned int index=0; while(st!=nd) { Ex::iterator it1=st; it1.skip_children(); ++it1; if(tr.equal(st, it1, obj_to_find, Algorithm::compare_)) { ++count; store.push_back(index); } ++st; ++index; } return count; } bool Algorithm::locate_object_set(const Ex& objs, Ex::iterator st, Ex::iterator nd, std::vector& store) { // Locate the objects in which to symmetrise. We use an integer // index (offset wrt. 'st') rather than an iterator because the // latter only apply to a single tree, not to its copies. // We accept only a tree with a \comma node at the top. Ex::iterator top=objs.begin(); if(*top->name!="\\comma") top = objs.begin(objs.begin()); assert(*top->name=="\\comma"); Ex::sibling_iterator fst=objs.begin(top); Ex::sibling_iterator fnd=objs.end(top); while(fst!=fnd) { Ex::iterator aim=fst; if((*aim->name)=="\\comma") { // Objects can themselves be lists of other objects (for instance // when we want to symmetrise in index pairs). if(locate_object_set(aim, st, nd, store)==false) return false; } else { if((*aim->name).size()==0 && tr.number_of_children(aim)==1) aim=tr.begin(aim); if(locate_single_object(aim, st, nd, store)!=1) return false; } ++fst; } return true; } namespace cadabra { // static functions unsigned int Algorithm::number_of_indices(const Properties& pr, iterator it) { unsigned int res=0; index_iterator indit=index_iterator::begin(pr, it); while(indit!=index_iterator::end(pr, it)) { ++res; ++indit; } return res; } unsigned int Algorithm::number_of_direct_indices(iterator it) { unsigned int res=0; sibling_iterator sib=Ex::begin(it); while(sib!=Ex::end(it)) { if(sib->fl.parent_rel==str_node::p_sub || sib->fl.parent_rel==str_node::p_super) ++res; ++sib; } return res; } bool Algorithm::less_without_numbers(nset_t::iterator it1, nset_t::iterator it2) { std::string::const_iterator ch1=(*it1).begin(); std::string::const_iterator ch2=(*it2).begin(); while(ch1!=(*it1).end() && ch2!=(*it2).end()) { if(isdigit(*ch1)) return true; // bla1 < blaq if(isdigit(*ch2)) return false; // blaa !< bla1 if(*ch1>=*ch2) return false; ++ch1; ++ch2; } if(ch1==(*it1).end()) { if(ch2==(*it2).end()) return false; else return true; } return false; } bool Algorithm::equal_without_numbers(nset_t::iterator it1, nset_t::iterator it2) { std::string::const_iterator ch1=(*it1).begin(); std::string::const_iterator ch2=(*it2).begin(); while(ch1!=(*it1).end() && ch2!=(*it2).end()) { if(isdigit(*ch1)) { if(isdigit(*ch2)) return true; else return false; } if(*ch1!=*ch2) return false; ++ch1; ++ch2; } if(ch1==(*it1).end()) { if(ch2==(*it2).end()) return true; else return false; } return false; } bool Algorithm::compare_(const str_node& one, const str_node& two) { // If the obj->name is empty, this means that we look for a tree with // anything as root, but the required index structure in obj. This // requires a slightly different 'equal_to' (one that always matches // an empty node with a non-empty node). if(/* one.fl.bracket!=two.fl.bracket || */ one.fl.parent_rel!=two.fl.parent_rel) return false; if((*two.name).size()==0) return true; else if(one.name==two.name) return true; return false; } }