{ "cells" : [ { "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_origin" : "client", "cell_type" : "latex_view", "source" : "\\property{GammaMatrix}{A generalised generator of a Clifford algebra.}\n\nA generalised generator of a Clifford algebra. With one vector index,\n it satisfies\n\\begin{equation}\n\\{ \\Gamma^m, \\Gamma^n \\} = 2\\,\\eta^{mn}\\,.\n\\end{equation}\nThe objects with more vector indices are defined as\n\\begin{equation}\n\\Gamma^{m_1\\ldots m_n} = \\Gamma^{[m_1}\\cdots \\Gamma^{m_n]}\\,,\n\\end{equation}\nwhere the anti-symmetrisation includes a division by~$n!$.\nIf you intend to use the \\algo{join_gamma} algorithm, you have to add a\nkey/value pair \\verb|metric| to set the name of the tensor which acts\nas the unit element in the Clifford algebra.\n" } ], "hidden" : true, "source" : "\\property{GammaMatrix}{A generalised generator of a Clifford algebra.}\n\nA generalised generator of a Clifford algebra. With one vector index,\n it satisfies\n\\begin{equation}\n\\{ \\Gamma^m, \\Gamma^n \\} = 2\\,\\eta^{mn}\\,.\n\\end{equation}\nThe objects with more vector indices are defined as\n\\begin{equation}\n\\Gamma^{m_1\\ldots m_n} = \\Gamma^{[m_1}\\cdots \\Gamma^{m_n]}\\,,\n\\end{equation}\nwhere the anti-symmetrisation includes a division by~$n!$.\nIf you intend to use the \\algo{join_gamma} algorithm, you have to add a\nkey/value pair \\verb|metric| to set the name of the tensor which acts\nas the unit element in the Clifford algebra.\n" }, { "cell_origin" : "client", "cell_type" : "input", "source" : "" } ], "description" : "Cadabra JSON notebook format", "version" : 1.0 }