{ "cell_id" : 2082837756733559988, "cells" : [ { "cell_id" : 1525272859004475730, "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_id" : 6179245722104386386, "cell_origin" : "client", "cell_type" : "latex_view", "source" : "\\section*{Cartan structural equations and Bianchi identity}\n\n\\author{Oscar Castillo-Felisola}\n\n\\section*{Theoretical background}\n\nLet $M$ be a manifold, and $g$ a (semi)Riemannian metric defined on $M$. Then the line element for the metric $g$ is\n\\begin{equation*}\n \\mathrm{d}{s}^2(g) = g_{\\mu\\nu} \\mathrm{d}{x}^\\mu \\otimes \\mathrm{d}{x}^\\nu.\n\\end{equation*}\nNonetheless, the information about the metric structure of the manifold can be translated to the language of frames,\n\\begin{equation*}\n \\begin{split}\n \\mathrm{d}{s}^2(g)\n & = g_{\\mu\\nu} \\mathrm{d}{x}^\\mu \\otimes \\mathrm{d}{x}^\\nu \\\\\n & = \\eta_{ab} \\; e^{a}_{\\mu}(x) \\, e^{b}_{\\nu}(x) \\; \\mathrm{d}{x}^\\mu \\otimes \\mathrm{d}{x}^\\nu \\\\\n & = \\eta_{ab} \\; \\mathrm{e}^{a} \\otimes \\mathrm{e}^{b}.\n \\end{split}\n\\end{equation*}\nTherefore, the vielbein 1-form, $\\mathrm{e}^{a} \\equiv e^{a}_{\\mu}(x) \\mathrm{d}{x}^\\mu$, encodes the information of the metric tensor.\nIn order to complete the structure, one needs information about the transport of geometrical objects lying on bundles\nbased on $M$. That information is encoded on the spin connection 1-form, $\\omega^{a}{}_{b}$. Using these quantities one finds\nthe generalisation of the structure equations of Cartan,\n\\begin{align}\n \\mathrm{d}{\\mathrm{e}^{a}} + \\omega^{a}{}_{b} \\wedge \\mathrm{e}^{b} & = \\mathrm{T}^{a},\n \\label{firstSE}\\\\\n \\mathrm{d}{\\omega^{a}{}_{c}} + \\omega^{a}{}_{b} \\wedge \\omega^{b}{}_{c} & = \\mathrm{R}^{a}{}_{c}\n \\label{secondSE}.\n\\end{align}\nThe torsion 2-form, $\\mathrm{T}^{a}$, and the curvature 2-form, $\\mathrm{R}^{a}{}_{c}$, measure the impossibility of endowing $M$ with\nan Euclidean structure.\n\n\\section*{Manipulation of the structural equations}\n\n\\subsection*{Definitions}" } ], "hidden" : true, "source" : "\\section*{Cartan structural equations and Bianchi identity}\n\n\\author{Oscar Castillo-Felisola}\n\n\\section*{Theoretical background}\n\nLet $M$ be a manifold, and $g$ a (semi)Riemannian metric defined on $M$. Then the line element for the metric $g$ is\n\\begin{equation*}\n \\mathrm{d}{s}^2(g) = g_{\\mu\\nu} \\mathrm{d}{x}^\\mu \\otimes \\mathrm{d}{x}^\\nu.\n\\end{equation*}\nNonetheless, the information about the metric structure of the manifold can be translated to the language of frames,\n\\begin{equation*}\n \\begin{split}\n \\mathrm{d}{s}^2(g)\n & = g_{\\mu\\nu} \\mathrm{d}{x}^\\mu \\otimes \\mathrm{d}{x}^\\nu \\\\\n & = \\eta_{ab} \\; e^{a}_{\\mu}(x) \\, e^{b}_{\\nu}(x) \\; \\mathrm{d}{x}^\\mu \\otimes \\mathrm{d}{x}^\\nu \\\\\n & = \\eta_{ab} \\; \\mathrm{e}^{a} \\otimes \\mathrm{e}^{b}.\n \\end{split}\n\\end{equation*}\nTherefore, the vielbein 1-form, $\\mathrm{e}^{a} \\equiv e^{a}_{\\mu}(x) \\mathrm{d}{x}^\\mu$, encodes the information of the metric tensor.\nIn order to complete the structure, one needs information about the transport of geometrical objects lying on bundles\nbased on $M$. That information is encoded on the spin connection 1-form, $\\omega^{a}{}_{b}$. Using these quantities one finds\nthe generalisation of the structure equations of Cartan,\n\\begin{align}\n \\mathrm{d}{\\mathrm{e}^{a}} + \\omega^{a}{}_{b} \\wedge \\mathrm{e}^{b} & = \\mathrm{T}^{a},\n \\label{firstSE}\\\\\n \\mathrm{d}{\\omega^{a}{}_{c}} + \\omega^{a}{}_{b} \\wedge \\omega^{b}{}_{c} & = \\mathrm{R}^{a}{}_{c}\n \\label{secondSE}.\n\\end{align}\nThe torsion 2-form, $\\mathrm{T}^{a}$, and the curvature 2-form, $\\mathrm{R}^{a}{}_{c}$, measure the impossibility of endowing $M$ with\nan Euclidean structure.\n\n\\section*{Manipulation of the structural equations}\n\n\\subsection*{Definitions}" }, { "cell_id" : 13528271774984453456, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775809, "cell_origin" : "server", "cell_type" : "latex_view", "source" : "\\begin{dmath*}{}\\text{Attached property DifferentialForm to~}\\left[e^{a},~\\discretionary{}{}{} \\omega^{a}\\,_{b}\\right].\\end{dmath*}" }, { "cell_id" : 9223372036854775810, "cell_origin" : "server", "cell_type" : "latex_view", "source" : "\\begin{dmath*}{}\\text{Attached property DifferentialForm to~}\\left[\\mathrm{T}^{a},~\\discretionary{}{}{} \\mathrm{R}^{a}\\,_{b}\\right].\\end{dmath*}" } ], "source" : "{a,b,c,l,m,n}::Indices.\nd{#}::ExteriorDerivative;.\nd{#}::LaTeXForm(\"\\mathrm{d}\").\nT{#}::LaTeXForm(\"\\mathrm{T}\").\nR{#}::LaTeXForm(\"\\mathrm{R}\").\n{e^{a}, \\omega^{a}_{b}}::DifferentialForm(degree=1); \n{T^{a}, R^{a}_{b}}::DifferentialForm(degree=2);" }, { "cell_id" : 12238953187398236596, "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_id" : 3573955577442069632, "cell_origin" : "client", "cell_type" : "latex_view", "source" : "\\subsection*{Cartan structural equations}" } ], "hidden" : true, "source" : "\\subsection*{Cartan structural equations}" }, { "cell_id" : 17296288306406801707, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775812, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775813, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(e^{a}) + \\omega^{a}_{b} ^ e^{b}-T^{a} = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}{e^{a}}+\\omega^{a}\\,_{b}\\wedge e^{b}-\\mathrm{T}^{a} = 0\\end{dmath*}" } ], "source" : "struc1 := d{e^{a}} + \\omega^{a}_{b} ^ e^{b} - T^{a} = 0;" }, { "cell_id" : 12676826774600030559, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775815, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775816, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(\\omega^{a}_{b}) + \\omega^{a}_{m} ^ \\omega^{m}_{b}-R^{a}_{b} = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}{\\omega^{a}\\,_{b}}+\\omega^{a}\\,_{m}\\wedge \\omega^{m}\\,_{b}-\\mathrm{R}^{a}\\,_{b} = 0\\end{dmath*}" } ], "source" : "struc2 := d{\\omega^{a}_{b}} + \\omega^{a}_{m} ^ \\omega^{m}_{b} - R^{a}_{b} = 0;" }, { "cell_id" : 5906705874232891115, "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_id" : 7464233204901409597, "cell_origin" : "client", "cell_type" : "latex_view", "source" : "In the following, we will also use the structural equations as definitions of the\nexterior derivatives of the vielbein and spin connection 1-forms. Therefore, we shall\nutilise the \\algo{isolate} algorithm---from the \\algo{cdb.core.manip} library---to \ndefine substitution rules." } ], "hidden" : true, "source" : "In the following, we will also use the structural equations as definitions of the\nexterior derivatives of the vielbein and spin connection 1-forms. Therefore, we shall\nutilise the \\algo{isolate} algorithm---from the \\algo{cdb.core.manip} library---to \ndefine substitution rules." }, { "cell_id" : 14872820092824926673, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775818, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775819, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(e^{a}) = -\\omega^{a}_{b} ^ e^{b} + T^{a}" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}{e^{a}} = -\\omega^{a}\\,_{b}\\wedge e^{b}+\\mathrm{T}^{a}\\end{dmath*}" } ], "source" : "from cdb.core.manip import *\nde:= @(struc1):\nisolate(de, $d{e^{a}}$);" }, { "cell_id" : 11514586735070898136, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775821, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775822, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(\\omega^{a}_{b}) = -\\omega^{a}_{m} ^ \\omega^{m}_{b} + R^{a}_{b}" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}{\\omega^{a}\\,_{b}} = -\\omega^{a}\\,_{m}\\wedge \\omega^{m}\\,_{b}+\\mathrm{R}^{a}\\,_{b}\\end{dmath*}" } ], "source" : "domega := @(struc2):\nisolate(domega, $d{\\omega^{a}_{b}}$);" }, { "cell_id" : 13650837369708637637, "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_id" : 13513964711918699242, "cell_origin" : "client", "cell_type" : "latex_view", "source" : "\\section*{Bianchi identities}\n\nThe bianchi identities are obtained by applying the exterior derivative to the structural\n equations.\n\n\\subsection*{First Bianchi identity}" } ], "hidden" : true, "source" : "\\section*{Bianchi identities}\n\nThe bianchi identities are obtained by applying the exterior derivative to the structural\n equations.\n\n\\subsection*{First Bianchi identity}" }, { "cell_id" : 10781709412135246056, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775824, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775825, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(d(e^{a}) + \\omega^{a}_{b} ^ e^{b}-T^{a}) = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}\\left(\\mathrm{d}{e^{a}}+\\omega^{a}\\,_{b}\\wedge e^{b}-\\mathrm{T}^{a}\\right) = 0\\end{dmath*}" } ], "source" : "Bianchi1 := d{ @(struc1) };" }, { "cell_id" : 13200781608660800209, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775827, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775828, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(\\omega^{a}_{b}) ^ e^{b}-\\omega^{a}_{b} ^ d(e^{b})-d(T^{a}) = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}{\\omega^{a}\\,_{b}}\\wedge e^{b}-\\omega^{a}\\,_{b}\\wedge \\mathrm{d}{e^{b}}-\\mathrm{d}{\\mathrm{T}^{a}} = 0\\end{dmath*}" } ], "source" : "distribute(Bianchi1)\nproduct_rule(_);" }, { "cell_id" : 5318681466055967294, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775830, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775831, "cell_origin" : "server", "cell_type" : "input_form", "source" : "-\\omega^{a}_{m} ^ \\omega^{m}_{b} ^ e^{b} + R^{a}_{b} ^ e^{b} + \\omega^{a}_{b} ^ \\omega^{b}_{c} ^ e^{c}-\\omega^{a}_{b} ^ T^{b}-d(T^{a}) = 0" } ], "source" : "\\begin{dmath*}{}-\\omega^{a}\\,_{m}\\wedge \\omega^{m}\\,_{b}\\wedge e^{b}+\\mathrm{R}^{a}\\,_{b}\\wedge e^{b}+\\omega^{a}\\,_{b}\\wedge \\omega^{b}\\,_{c}\\wedge e^{c}-\\omega^{a}\\,_{b}\\wedge \\mathrm{T}^{b}-\\mathrm{d}{\\mathrm{T}^{a}} = 0\\end{dmath*}" } ], "source" : "substitute(Bianchi1, de, repeat=True)\nsubstitute(Bianchi1, domega, repeat=True)\ndistribute(_);" }, { "cell_id" : 12361525078320634286, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775833, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775834, "cell_origin" : "server", "cell_type" : "input_form", "source" : "R^{a}_{b} ^ e^{b}-\\omega^{a}_{b} ^ T^{b}-d(T^{a}) = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{R}^{a}\\,_{b}\\wedge e^{b}-\\omega^{a}\\,_{b}\\wedge \\mathrm{T}^{b}-\\mathrm{d}{\\mathrm{T}^{a}} = 0\\end{dmath*}" } ], "source" : "rename_dummies(Bianchi1);" }, { "cell_id" : 3384034677461271825, "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_id" : 13291494998090488942, "cell_origin" : "client", "cell_type" : "latex_view", "source" : "In the absence of torsion, the above expression is the well-known \\emph{algebraic} Bianchi identity\n\\begin{equation*}\nR^\\mu{}_{\\nu\\lambda\\rho} + R^\\mu{}_{\\lambda\\rho\\nu} + R^\\mu{}_{\\rho\\nu\\lambda} = 0.\n\\end{equation*}" } ], "hidden" : true, "source" : "In the absence of torsion, the above expression is the well-known \\emph{algebraic} Bianchi identity\n\\begin{equation*}\nR^\\mu{}_{\\nu\\lambda\\rho} + R^\\mu{}_{\\lambda\\rho\\nu} + R^\\mu{}_{\\rho\\nu\\lambda} = 0.\n\\end{equation*}" }, { "cell_id" : 3283601467486312560, "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_id" : 9810454215356752931, "cell_origin" : "client", "cell_type" : "latex_view", "source" : "\\subsection*{Second Bianchi identity}" } ], "hidden" : true, "source" : "\\subsection*{Second Bianchi identity}" }, { "cell_id" : 10044568257557969795, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775836, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775837, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(d(\\omega^{a}_{b}) + \\omega^{a}_{m} ^ \\omega^{m}_{b}-R^{a}_{b}) = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}\\left(\\mathrm{d}{\\omega^{a}\\,_{b}}+\\omega^{a}\\,_{m}\\wedge \\omega^{m}\\,_{b}-\\mathrm{R}^{a}\\,_{b}\\right) = 0\\end{dmath*}" } ], "source" : "Bianchi2 := d{ @(struc2) };" }, { "cell_id" : 7450601817332024218, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775839, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775840, "cell_origin" : "server", "cell_type" : "input_form", "source" : "d(\\omega^{a}_{m}) ^ \\omega^{m}_{b}-\\omega^{a}_{m} ^ d(\\omega^{m}_{b})-d(R^{a}_{b}) = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{d}{\\omega^{a}\\,_{m}}\\wedge \\omega^{m}\\,_{b}-\\omega^{a}\\,_{m}\\wedge \\mathrm{d}{\\omega^{m}\\,_{b}}-\\mathrm{d}{\\mathrm{R}^{a}\\,_{b}} = 0\\end{dmath*}" } ], "source" : "distribute(Bianchi2)\nproduct_rule(_);" }, { "cell_id" : 17474571898667354088, "cell_origin" : "client", "cell_type" : "input", "cells" : [ { "cell_id" : 9223372036854775842, "cell_origin" : "server", "cell_type" : "latex_view", "cells" : [ { "cell_id" : 9223372036854775843, "cell_origin" : "server", "cell_type" : "input_form", "source" : "R^{a}_{c} ^ \\omega^{c}_{b}-\\omega^{a}_{c} ^ R^{c}_{b}-d(R^{a}_{b}) = 0" } ], "source" : "\\begin{dmath*}{}\\mathrm{R}^{a}\\,_{c}\\wedge \\omega^{c}\\,_{b}-\\omega^{a}\\,_{c}\\wedge \\mathrm{R}^{c}\\,_{b}-\\mathrm{d}{\\mathrm{R}^{a}\\,_{b}} = 0\\end{dmath*}" } ], "source" : "substitute(Bianchi2, domega, repeat=True)\ndistribute(_)\nrename_dummies(_);" }, { "cell_id" : 4167877586568113468, "cell_origin" : "client", "cell_type" : "latex", "cells" : [ { "cell_id" : 4549200947217648772, "cell_origin" : "client", "cell_type" : "latex_view", "source" : "The above result, when written in tensorial components, is the well-known\n\\emph{differential} Bianchi identity:\n\\begin{equation*}\n R^\\mu{}_{\\nu\\lambda\\rho;\\sigma} + R^\\mu{}_{\\nu\\sigma\\lambda;\\rho} + R^\\mu{}_{\\nu\\rho\\sigma;\\lambda} = 0.\n\\end{equation*}" } ], "hidden" : true, "source" : "The above result, when written in tensorial components, is the well-known\n\\emph{differential} Bianchi identity:\n\\begin{equation*}\n R^\\mu{}_{\\nu\\lambda\\rho;\\sigma} + R^\\mu{}_{\\nu\\sigma\\lambda;\\rho} + R^\\mu{}_{\\nu\\rho\\sigma;\\lambda} = 0.\n\\end{equation*}" }, { "cell_id" : 13682950063533411677, "cell_origin" : "client", "cell_type" : "input", "source" : "" } ], "description" : "Cadabra JSON notebook format", "version" : 1 }